Skip to main content
Log in

The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Composite Li10SnP2S12 (LSPS)/polyethylene oxide (PEO) films, containing 25 to 50 % polymer, were electrophoretically deposited from acetone-based suspension and tested as possible candidates for polysulfide barriers in Li/S batteries. It was found by XRD and XPS tests that saturation of composite films by LiI salt, followed by prolonged annealing at 90 °C, diminishes the crystallinity of neat LSPS and results in the formation of a novel composite Li10+xIxSnP2S12 (LISPS)/P(EO)3/LiI solid electrolyte (x < 1). The high room-temperature ion conductivity of amorphous sulfide Li10+xIxSnP2S12 (0.1–0.3 mS cm−1) is restricted by slow ion transport via the polymer electrolyte (PE) imbedded in ceramics and grain boundaries between the PE and sulfide. Increase in polymer content and temperature improves total ion transport in the LISPS/PEO system. Conformal EPD coating of sulfur and lithium sulfide cathodes by the developed composite electrolyte increased the reversible capacity and Faradaic efficiency of the Li/S and Li/Li2S cells and enabled their operation at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nole DA, Moss V (1970) US Pat 3:532–543

    Google Scholar 

  2. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) J Electrochem Soc 126:523–527

    Article  CAS  Google Scholar 

  3. Yamin H, Peled E (1983) J Power Sources 9:281–287

    Article  CAS  Google Scholar 

  4. Ji X, Lee KT, Nazar LF (2009) Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  5. Evers S, Nazar LF (2013) Acc Chem Res 46:1135–1143

    Article  CAS  Google Scholar 

  6. Lai C, Gao XP, Zhang B, Yan TY, Zhou Z (2009) J Phys Chem C 113:4712–4716

    Article  CAS  Google Scholar 

  7. Liang C, Dudney NJ, Howe JY (2009) Chem Mater 21:4724–4730

    Article  CAS  Google Scholar 

  8. Song MK, Zhang Y, Cairns EJ (2013) Nano Lett 13:5891–5899

    Article  CAS  Google Scholar 

  9. Wu F, Magasinskia A, Yushin G (2014) J Mater Chem A 2:6064–6070

    Article  CAS  Google Scholar 

  10. Zheng Y, Yang JJ (2011) Cha, Hong SS, cui Y. Nano Lett 11:4462–4467

    Article  CAS  Google Scholar 

  11. Hayashi OT, Mizuno F, Tadanaga K, Tatsumisago M (2003) Electrochem Commun 5:701–705

    Article  CAS  Google Scholar 

  12. Yu X, Xie J, Yang J, Wang K (2004) J Power Sources 132:181–186

    Article  CAS  Google Scholar 

  13. Machidaa N, Kobayashia K, Nishikawaa Y, Shigematsu T (2004) Solid State Ionics 175:247–250

    Article  Google Scholar 

  14. Scrosati HJ (2010) B Adv Mater 22:5198–5201

    Article  Google Scholar 

  15. Xin S, Guo YG, Wan LJ (2012) Acc Chem Res 45:1759–1769

    Article  CAS  Google Scholar 

  16. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  17. Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y (2013) Nano Lett 13:5534

    Article  CAS  Google Scholar 

  18. Ji X, Evers S, Black R, Nazar LF (2011) Nat Commun 325:293

    Google Scholar 

  19. Su YS, Manthiram A (2012) Chem Commun 48:8817–8819

    Article  CAS  Google Scholar 

  20. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  21. Visco S J, Katz BD, Nimon YS, De Jonghe LC (2012) PolyPlus Battery Company, U.S. Patent 8293398

  22. Lu Y, Goodenough JB, Kim YJ (2011) Am Chem Soc 133:5756–5759

    Article  CAS  Google Scholar 

  23. Li W, Hicks-Garner J, Wang J, Liu J, Gross AF, Sherman E, Graetz J, Vajo JJ, Liu P (2014) Chem Mater 26:3403–3410

    Article  CAS  Google Scholar 

  24. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  25. Park JW, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) J Phys Chem C:20531

  26. Salitra G, Markevich E, Rosenman A, Talyosef Y, Aurbach D, Garsuch A (2014) ChemElectroChem 319:1492

    Article  Google Scholar 

  27. Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S (2013) J Am Chem Soc 135:15694–15697

    Article  CAS  Google Scholar 

  28. Nagao M, Hayashi A, Tatsumisago M (2012) J Mater Chem 22:10015–10020

    Article  CAS  Google Scholar 

  29. Kitaura H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) J Mater Chem 21:118

    Article  CAS  Google Scholar 

  30. Liu D, Zhu W, Feng Z, Guerfi A, Vijh A, Zaghib K (2016) Mater Sci Eng B. doi:10.1016/j.mseb.2016.03.005

    Google Scholar 

  31. Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2010) Electrochem Solid-State Lett 13:A73–A75

    Article  CAS  Google Scholar 

  32. Hayashi A, Yamashita H, Tatsumisago M, Minami T (2002) Solid State Ionics 148:381–389

    Article  CAS  Google Scholar 

  33. Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C (2015) J Am Chem Soc 137:1384–1387

    Article  CAS  Google Scholar 

  34. Ohshima H, Ohki S (1985) Biophys J 47:673

    Article  CAS  Google Scholar 

  35. Zhulina EB, Borisov OV (2011) Langmuir 27:10615

    Article  CAS  Google Scholar 

  36. Blanga R, Burstein L, Berman M, Greenbaum SG, Golodnitsky D (2015) J Electrochem Soc 162:D3084–D3089

    Article  CAS  Google Scholar 

  37. Armand M (1983) Solid State Ionics 9-10:745–754

    Article  CAS  Google Scholar 

  38. Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J, Lotsch BW (2014) Phys Chem Chem Phys 16:14669

    Article  CAS  Google Scholar 

  39. Blanga R, Berman M, Biton M, Tariq F, Yufit V, Gladkich A, Greenbaum SG, Brandon N, Golodnitsky D (2016) Electrochim Acta 208:71–79

    Article  CAS  Google Scholar 

  40. Martin-Vosshage D, Chowdari BVR (1995) Electrochim Acta 13-14(40):2109–2114

    Article  Google Scholar 

  41. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger W (2009) Surf Sci 603:2849–2860

    Article  CAS  Google Scholar 

  42. Beamson G, Briggs D (1992) High resolution XPS of organic polymers—the Scienta ESCA300 Database, Wiley Interscience, Appendices 3.1 and 3.2

  43. Ota H, Sakata Y, Wang X, Sasahara J, Yasukawa E (2004) J Electrochem Soc 151:A437–A446

    Article  CAS  Google Scholar 

  44. NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, version 4.1 http://srdata.nist.gov/xps/Version_his.aspx

Download references

Acknowledgments

This work has been funded by the Israel Academy of Science, Grant 2049/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Golodnitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanga, R., Goor, M., Burstein, L. et al. The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20, 3393–3404 (2016). https://doi.org/10.1007/s10008-016-3303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3303-7

Keywords

Navigation