Skip to main content
Log in

Adsorption and diffusion on a phosphorene monolayer: a DFT study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A computational study of the adsorption and diffusion behavior of alkali and alkaline earth metal atoms on a phosphorene monolayer is reported. Our calculations were performed within the framework of density functional theory using the Perdew–Burke–Ernzerhof functional and projector augmented wave potentials, as derived from the generalized gradient approximation. Our binding energy calculations for various potential adsorption sites showed that the site located above the center of a triangle formed by three surface phosphorus atoms is the most attractive to all adatoms. In addition, simulation of the diffusion of adatoms across the surface of the phosphorene monolayer showed that the diffusion is anisotropic, with K having the lowest diffusion barrier (0.02 eV along the zigzag pathway). To the best of our knowledge, this is the lowest diffusion barrier of any metal adatom on a single layer of phosphorene. While phosphorene exhibited significantly better adatom adsorption and diffusion than graphene, it also showed a reduced storage capacity compared to graphene, most probably due to the structural distortion induced by the oversaturated phosphorene surface. This finding strongly suggests that a phosphorene–graphene hybrid system could be employed as a promising high-capacity ion anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–e
Fig. 4
Fig. 5
Fig. 6a–b

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  3. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  5. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  6. Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313):305–308

    Article  CAS  Google Scholar 

  7. Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718

    Article  CAS  Google Scholar 

  8. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12(6):2745–2750

    Article  CAS  Google Scholar 

  9. Liu H, Gao P, Fang J, Yang G (2011) Li3 V2 (PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun 47(32):9110–9112

  10. Yan JF, Zhang SY, Wang G, Wang H, Zhang ZY, Ruan XF, Zheng HY (2015) Preparation assisted via thermal stress and electrochemical performance of graphene nano-sheets as anode materials for lithium-ion batteries. Integr Ferroelectr 160(1):27–37

  11. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282

  12. Chang K, Chen W (2011) L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728

  13. Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Vajtai R, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13(4):1596–1601

  14. Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44(9):1811–1815

  15. Du G, Guo Z, Wang S, Zeng R, Chen Z, Liu H (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun 46(7):1106–1108

    Article  CAS  Google Scholar 

  16. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830

  17. Chang K, Chen W (2011) Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem 21(43):17175–17184

  18. Li Y, Wu D, Zhou Z, Cabrera CR, Chen Z (2012) Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J Phys Chem Lett 3(16):2221–2227

  19. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Article  CAS  Google Scholar 

  20. Park CM, Sohn HJ (2007) Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 19(18):2465–2468

    Article  CAS  Google Scholar 

  21. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9(5):372–377

    Article  CAS  Google Scholar 

  22. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21(20):3859–3867

    Article  CAS  Google Scholar 

  23. Sun J, Lee HW, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y (2015) A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10(11):980–985

    Article  CAS  Google Scholar 

  24. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  26. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  CAS  Google Scholar 

  27. Li QF, Duan CG, Wan XG, Kuo JL (2015) Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J Phys Chem C 119(16):8662–8670

  28. Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112(17):176802

    Article  Google Scholar 

  29. Kou L, Frauenheim T, Chen C (2014) Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. J Phys Chem Lett 5(15):2675–2681

    Article  CAS  Google Scholar 

  30. Tritsaris GA, Kaxiras E, Meng S, Wang E (2013) Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett 13(5):2258–2263

  31. Banerjee S, Pati SK (2016) Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg–P bond-synergy. Chem Commun 52(54):8381–8384

  32. Kulish VV, Malyi OI, Persson C, Wu P (2015) Adsorption of metal adatoms on single-layer phosphorene. Phys Chem Chem Phys 17(2):992–1000

    Article  CAS  Google Scholar 

  33. Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15(3):1691–1697

    Article  Google Scholar 

  34. Kulish VV, Malyi OI, Persson C, Wu P (2015) Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys Chem Chem Phys 17(21):13921–13928

    Article  CAS  Google Scholar 

  35. Liu X, Wang CZ, Hupalo M, Lu WC, Tringides MC, Yao YX, Ho KM (2012) Metals on graphene: correlation between adatom adsorption behavior and growth morphology. Phys Chem Chem Phys 14(25):9157–9166

    Article  CAS  Google Scholar 

  36. Denis PA, Iribarne F (2014) Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene. Chem Phys 430:1–6

    Article  CAS  Google Scholar 

  37. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 30; 36(3):354–360

    Article  Google Scholar 

  38. Uthaisar C, Barone V (2010) Edge effects on the characteristics of Li diffusion in graphene. Nano Lett 10(8):2838–2842

  39. Xu B, Lu HS, Liu B, Liu G, Wu MS, Ouyang C (2016) Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: insight from first-principles calculations. Chin Phys B 25(6):067103

    Article  Google Scholar 

  40. Radisavljevic B, Radenovic A, Brivio J, Giacometti IV, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

  41. Datta D, Li J, Shenoy VB (2014) Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries. ACS Appl Mater Interfaces 6(3):1788–1795

  42. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134(40):16909–16916

  43. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179

  44. Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286

  45. Sibari A, El Marjaoui A, Lakhal M, Kerrami Z, Kara A, Benaissa M, Ennaoui A, Hamedoun M, Benyoussef A, Mounkachi O (2017) Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: a first-principle study. Sol Energy Mater Sol Cells. doi:10.1016/j.solmat.2017.06.034

  46. Mortazavi B, Dianat A, Cuniberti G, Rabczuk T (2016) Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim Acta 20(213):865–870

  47. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89(23):235319

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sibari, O. Mounkachi or M. Benaissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibari, A., Kerrami, Z., Kara, A. et al. Adsorption and diffusion on a phosphorene monolayer: a DFT study. J Solid State Electrochem 22, 11–16 (2018). https://doi.org/10.1007/s10008-017-3703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3703-3

Keywords

Navigation