Skip to main content
Log in

Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Li[Li0.2Ni0.13-x + y/3Co0.13-x + y/3Mn0.54-x + y/3]Al x Zr y O2 was synthesized via conventional solution combustion synthesis method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical experiment were used for material characterization and evaluation of powder morphology and electrochemical performance. According to XRD and SEM results, Zr-Al was successfully synthesized and it was inserted into crystal lattice. In addition, Zr-Al co-substitution distributed uniformly in Li[Li0.2Ni0.13Co0.13Mn0.54]O2. The results indicate that by addition of Zr, lattice parameters a and c are increased and lattice volume becomes larger. Addition of Al improves structural stability of cathode materials. The sample with Al (x = 0.02) and Zr (y = 0.015) exhibited high discharge capacity and best cycling performance. The Li[Li0.2Ni0.13Co0.13Mn0.54]0.965Al0.02Zr0.015O2 showed higher cycling stability and higher capacity in comparison with those of non-substituted material. The initial discharge capacity for Zr-Al co-doped electrode was 245.5 mAh g−1 at 25 mA g−1, and capacity retention was 98% after 50 cycle. While, the initial discharge capacity for bare electrode was 239.1 mAh g−1 at 25 mA g−1, and capacity retention was 93% after 50 cycle. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) revealed that by addition of Zr-Al ingredients, electrochemical performance of the Li[Li0.2Ni0.13Co0.13Mn0.54]O2 is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Song MK, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. J Mater Sci Eng 72(11):203–252. https://doi.org/10.1016/j.mser.2011.06.001

    Article  Google Scholar 

  2. Donghan K, Jason RC, Michael MT (2013) Comments on stabilizing layered manganese oxide electrodes for Li batteries. J Electrochem Commun 36:103–106

    Article  Google Scholar 

  3. Li L, Song BH, Chang YL, Xia H, Yang JR, Lee KS, Lu L (2015) Retarded phase transition by fluorine doping in Li-rich layered Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material. J Power Sources 283:162–170. https://doi.org/10.1016/j.jpowsour.2015.02.085

    Article  CAS  Google Scholar 

  4. Jason RC, Kevin GG, Mahalingam B, Zonghai C, Yang R, Donghan K, Sun-Ho K, Dennis WD, Michael MT (2013) Examining hysteresis in composite x Li2MnO3·(1–x) LiMO2 cathode structures. J Phys Chem C 117(13):6525–6536

    Article  Google Scholar 

  5. Naoaki Y, Kazuhiro Y, Seung TM, Izumi N, Shinichi K (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3− LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419

    Article  Google Scholar 

  6. Zhe L, Fei D, Xiaofei B, Dong Z, Yongmao C, Xinran C, Chunzhong W, Gang C, Yingjin W (2010) Electrochemical kinetics of the Li [Li0. 23Co0. 3Mn0. 47] O2 cathode material studied by GITT and EIS. J Phys Chem C 114(51):22751–22757

    Article  Google Scholar 

  7. Shi SJ, JP T, Tang YY, YX Y, Zhang YQ, Wang XL (2013) Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources 221:300–307. https://doi.org/10.1016/j.jpowsour.2012.08.031

    Article  CAS  Google Scholar 

  8. Shi SJ, JP T, Tang YY, Zhang YQ, Wang XL, CD G (2013) Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sources 240:140–148. https://doi.org/10.1016/j.jpowsour.2013.04.006

    Article  CAS  Google Scholar 

  9. Miklos L, Gal A, Dror E, Peter YL, Xiaofeng Z, Ilias B, Richard LA (2014) Development of a scalable spray pyrolysis process for the production of non-hollow battery materials. J Power Sources 266:175–178

    Article  Google Scholar 

  10. Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401. https://doi.org/10.1016/j.ceramint.2015.05.102

    Article  CAS  Google Scholar 

  11. He Z, Wang Z, Cheng L, Zhu Z, Li T, Li X, Guo H (2014) Structural and electrochemical characterization of layered 0.3Li2MnO3·0.7LiMn0.35− x/3Ni0.5− x/3Co0.15− x/3CrxO2 cathode synthesized by spray drying. Adv Powder Technol 25(2):647–653. https://doi.org/10.1016/j.apt.2013.10.008

    Article  CAS  Google Scholar 

  12. Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55 Li 2 MnO 3· 0.45 LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode for Li-ion batteries. Electrochim Acta 80:187–195. https://doi.org/10.1016/j.electacta.2012.06.118

    Article  CAS  Google Scholar 

  13. Dan W, Yan H, Zhenqing H, Li C (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466

    Article  Google Scholar 

  14. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6(13):10330–10341. https://doi.org/10.1021/am5017649

    Article  CAS  Google Scholar 

  15. Jiangyong D, Zhongqiang S, Kunlei Z, Xiaoyan L, Jianhua T, Haiyan D (2015) Improved electrochemical performance of Li[Li0. 2Mn0. 54Ni0. 13Co0. 13]O2 by doping with molybdenum for Lithium battery. J Solid State Electrochem 19(4):1037–1044

    Article  Google Scholar 

  16. Ke D, Fei Y, GR H, Peng ZD, Cao YB, Kwang SR (2013) Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co 0.13] O2 material for Li-ion batteries. J Power Sources 244:29–34

    Article  Google Scholar 

  17. Chengren W, Xiangpeng F, Xianwei G, Ya M, Jun M, Changchun Z, Zhaoxiang W, Liquan C (2013) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49

    Article  Google Scholar 

  18. Zhenjiang H, Zhixing W, Huajun G, Xinhai L, Wu X, Peng Y, Jiexi W (2013) A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co 0.13]O2 for lithium-ion batteries. J Mater Lett 91:261–264

    Article  Google Scholar 

  19. Xiaoping Z, Shuwei S, Qing W, Ning W, Du P, Ying B (2015) Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56] O2 via Li2ZrO3 surface modification. J Power Sources 282:378–384

    Article  Google Scholar 

  20. Li Z, Hong JH, Gang H, Lü L (2015) Effect of FePO4 coating on performance of Li1.2Mn0. 54Ni0. 13Co0. 13O2 as cathode material for Li-ion battery. J Inorg Mater 30(2):129–134

    Article  CAS  Google Scholar 

  21. Lee ES, Manthiram A (2011) High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–VO2 (B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries. J Electrochem Soc 158(1):A47–A50. https://doi.org/10.1149/1.3515900

    Article  CAS  Google Scholar 

  22. Weibo H, Jibin Z, Zhuo Z, Wenyuan L, Xihao P, Xiao DG, Benhe Z, Yan JW, Xinlong W (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans 43(39):14824–14832

    Article  Google Scholar 

  23. Yin Z, Zhen BW, Jie L, Fang FL, Jin W, Xiao GZ, DY F, Ke K (2015) Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1− xTixO2 cathode materials for lithium-ion battery. Ceram Int 41(7):9069–9077

    Article  Google Scholar 

  24. Li QW, Li FJ, Hua TY, Jian G, Ming Z, Hai XL, Yong MW (2006) Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for Li-ion battery. J Power Sources 162(2):1367–1372

    Article  Google Scholar 

  25. Doron A, Onit SL, Chandan G, Mudit D, Ortal H, Michael T, Yehudit G, Nicole L, Ronit L, Dan TM, Gil G, Ella Z, Evan ME, Monica K, Boris M, Jordan L, Aleksei V, Ji-Yong S, Arnd G (2015) Studies of aluminum-doped LiNi0. 5Co0. 2Mn0. 3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J Electrochem Soc 162(6):A1014–A1027

    Article  Google Scholar 

  26. Bang HJ, Park BC, Prakash J, Sun YK (2007) Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.45− xZrx]O2 (x= 0, 0.02) via co-precipitation method. J Power Sources 174(2):565–568. https://doi.org/10.1016/j.jpowsour.2007.06.122

    Article  CAS  Google Scholar 

  27. Wenbin L, Dahn JR (2011) The impact of Zr substitution on the structure, electrochemical performance and thermal stability of Li[Ni1/3Mn1/3− z Co1/3Zr z]O2. J Electrochem Soc 158(4):A428–A433

    Article  Google Scholar 

  28. Sivaprakash S, Majumder SB (2009) Understanding the role of Zr 4+ cation in improving the cycleability of LiNi0.8Co0.15Zr0.05O2 cathodes for Li ion rechargeable batteries. J Alloys and Compounds 479(1):561–568. https://doi.org/10.1016/j.jallcom.2008.12.129

    Article  CAS  Google Scholar 

  29. Seon HK, Chang SK (2009) Improving the rate performance of LiCoO2 by Zr doping. J Electroceram 23:2–4

    Google Scholar 

  30. Bin L, Zhaoyin W, Zhonghua G, Xiaoxiong X (2007) Preparation and electrochemical properties of Li[Ni1/3Co1/3Mn1− x/3Zr x/3]O2 cathode materials for Li-ion batteries. J Power Sources 174(2):544–547

    Article  Google Scholar 

  31. Kyung HJ, Hyung WH, Nan JY, Ming ZH, Keon K (2005) Zr-doped Li[Ni0.5−xMn0.5− xZr2x]O2 (x= 0, 0.025) as cathode material for lithium ion batteries. Electrochim Acta 50(27):5349–5353

    Article  Google Scholar 

  32. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6(10):1085–1091. https://doi.org/10.1016/j.elecom.2004.08.002

    Article  CAS  Google Scholar 

  33. Kim GY, Park YJ, Jung KH, Yang DJ, Lee JW, Kim HG (2008) High-rate, high capacity ZrO2 coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2 for lithium secondary batteries. J applied electrochem 38(10):1477–1481. https://doi.org/10.1007/s10800-008-9567-6

    Article  CAS  Google Scholar 

  34. Na SH, Kim HO, Moon CI (2005) Synthesis and electrochemical study of Zr-doped LiNixMnyCo(1-x–y)O2 as cathode material for secondary Li-ion battery. Mater Sci Forum 486:614–617

    Article  Google Scholar 

  35. Jiang KC, Xin S, Lee JS, Kim J, Xiao XL, Guo YG (2012) Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Phys Chem Chem Phys 14(8):2934–2939. https://doi.org/10.1039/c2cp23363k

    Article  CAS  Google Scholar 

  36. Jaftaa CJ, Raju K, Mathe MK, Manyala N, Ozoemena KI (2015) Microwave irradiation controls the manganese oxidation states of nanostructured (Li[Li0.2Mn0.52Ni0.13Co0.13Al0.02]O2) layered cathode materials for high-performance lithium ion batteries. J Electrochem Soc 162(4):A768–A773. https://doi.org/10.1149/2.0931504jes

    Article  Google Scholar 

  37. Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K (2004) Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J Power Sources 128(2):278–285. https://doi.org/10.1016/j.jpowsour.2003.10.009

    Article  CAS  Google Scholar 

  38. Feng W, Jun T, Yuefeng S, Jing W, Cunzhong Z, Liying B, Tao H, Jinghui L, Shi C (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7(14):7702–7708

    Article  Google Scholar 

  39. Wen L, Miao W, Xing LG, Weidong Z, Jitao C, Henghui Z, Xinxiang Z (2012) Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloys and Compounds 543:181–188

    Article  Google Scholar 

  40. Tang T, Zhang HL (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1-xAlx]O2. Electrochim Acta 191:263–269. https://doi.org/10.1016/j.electacta.2016.01.066

    Article  CAS  Google Scholar 

  41. Xu J, Chou SL, QF G, Liu HK, Dou SX (2013) The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. J Power Sources 225:172–178. https://doi.org/10.1016/j.jpowsour.2012.10.033

    Article  CAS  Google Scholar 

  42. Guorong H, Manfang Z, Longwei L, Zhongdong P, Ke D, Yanbing C (2016) Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275

    Article  Google Scholar 

  43. Li X, Kehui Q, Yuyan G, Xia H, Fangdong Z (2015) High potential performance of cerium-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode material for Li-ion battery. J Mater Sci 50(7):2914–2920

    Article  Google Scholar 

  44. Huang Y, Jin FM, Chen FJ, Chen L (2014) Improved cycle stability and high-rate capability of Li 3 VO 4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages. J Power Sources 256:1–7. https://doi.org/10.1016/j.jpowsour.2014.01.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Riahifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanzadeh, M., Allahyari, E., Riahifar, R. et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery. J Solid State Electrochem 22, 1155–1163 (2018). https://doi.org/10.1007/s10008-017-3824-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3824-8

Keywords

Navigation