Skip to main content
Log in

Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

  • ORIGINAL ARTICLE
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific capacitance of 1140 F g−1 at a current density of 10 A g−1, which is far better than PANI (250 F g−1), PANI/GO (610 F g−1), Fe3+-PANI/GO (744 F g−1), and Zn2+-PANI/GO (964 F g−1). After 4000 cycles, the fabricated Fe3+-Zn2+-PANI/GO/SS electrode shows 85% capacitance retention at a current density of 5 A g−1. The resulting good electrochemical performance is owing to the combination of electrical double layer capacitance of GO and pseudocapacitive characteristic of PANI and transition metal ions, which can effectively increase the specific capacitance value and cycling performance of the prepared nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586. https://doi.org/10.1016/j.electacta.2017.05.152

    Article  CAS  Google Scholar 

  2. Zhang J, Jiang D, Chen B, Zhu J, Jiang L, Fang H (2001) Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor. J Electrochem Soc 148:1362–1367

    Article  Google Scholar 

  3. Asen P, Shahrokhian S (2017) A high performance supercapacitor based on graphene/ polypyrrole/Cu2O–Cu (OH) 2 ternary nanocomposite coated on nickel foam. J Phys Chem C 121(12):6508–6519. https://doi.org/10.1021/acs.jpcc.7b00534

    Article  CAS  Google Scholar 

  4. Mao M, Hu J, Liu H (2015) Graphene-based materials for flexible electrochemical energy storage. Int J Energy Res 39(6):727–740. https://doi.org/10.1002/er.3256

    Article  CAS  Google Scholar 

  5. Van Chuc N, Thanh CT, Van Tu N, Phuong VT, Thang PV, Tam NTT (2015) A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J Mater Sci Technol 31(5):479–483. https://doi.org/10.1016/j.jmst.2014.11.027

    Article  Google Scholar 

  6. Wang S, Gao T, Li Y, Li S, Zhou G (2017) Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor. J Solid State Electrochem 21(3):705–714. https://doi.org/10.1007/s10008-016-3410-5

    Article  CAS  Google Scholar 

  7. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39(1):111–119. https://doi.org/10.1002/er.3225

    Article  CAS  Google Scholar 

  8. Bhat DK, Kumar MS (2007) N and p doped poly (3, 4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J Mater Sci 42(19):8158–8162. https://doi.org/10.1007/s10853-007-1704-9

    Article  CAS  Google Scholar 

  9. Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48(4):1711–1716. https://doi.org/10.1007/s10853-012-6929-6

    Article  CAS  Google Scholar 

  10. Ng C, Lim H, Lim Y, Chee W, Huang N (2015) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39(3):344–355. https://doi.org/10.1002/er.3247

    Article  CAS  Google Scholar 

  11. Ke Q, Liao Y, Yao S, Song L, Xiong X (2016) A three-dimensional TiO2/graphene porous composite with nano-carbon deposition for supercapacitor. J Mater Sci 51(4):2008–2016. https://doi.org/10.1007/s10853-015-9510-2

    Article  CAS  Google Scholar 

  12. Asen P, Shahrokhian S (2017) One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor. Int J Hydrog Energy 42(33):21073–21085. https://doi.org/10.1016/j.ijhydene.2017.07.008

    Article  CAS  Google Scholar 

  13. Goto F, Abe K, Ikabayashi K, Yoshida T, Morimoto H (1987) The polyaniline/lithium battery. J Power Sources 20(3-4):243–248. https://doi.org/10.1016/0378-7753(87)80118-0

    Article  CAS  Google Scholar 

  14. Eising M, Cava CE, Salvatierra RV, Zarbin AJG, Roman LS (2017) Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors Actuators B Chem 245:25–33. https://doi.org/10.1016/j.snb.2017.01.132

    Article  CAS  Google Scholar 

  15. Xing J, Liao M, Zhang C, Yin M, Li D, Song Y (2017) The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Phys Chem Chem Phys 19(21):14030–14041. https://doi.org/10.1039/C7CP02016C

    Article  CAS  Google Scholar 

  16. Bai M-H, Liu T-Y, Luan F, Li Y, Liu X-X (2014) Electrodeposition of vanadium oxide–polyaniline composite nanowire electrodes for high energy density supercapacitors. J Mater Chem A 2(28):10882–10888. https://doi.org/10.1039/C3TA15391F

    Article  CAS  Google Scholar 

  17. Omar FS, Numan A, Duraisamy N, Ramly MM, Ramesh K, Ramesh S (2017) Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application. Electrochim Acta 227:41–48. https://doi.org/10.1016/j.electacta.2017.01.006

    Article  CAS  Google Scholar 

  18. Ryu KS, Kim KM, Kang S-G, Joo J, Chang SH (2000) Comparison of lithium//polyaniline secondary batteries with different dopants of HCl and lithium ionic salts. J Power Sources 88(2):197–201. https://doi.org/10.1016/S0378-7753(00)00373-6

    Article  CAS  Google Scholar 

  19. Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114(17):8062–8067. https://doi.org/10.1021/jp9113255

    Article  CAS  Google Scholar 

  20. Zhang K, Zhang LL, Zhao X, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401. https://doi.org/10.1021/cm902876u

    Article  CAS  Google Scholar 

  21. Song RY, Park JH, Sivakkumar S, Kim SH, Ko JM, Park D-Y et al (2007) Supercapacitive properties of polyaniline/Nafion/hydrous RuO 2 composite electrodes. J Power Sources 166(1):297–301. https://doi.org/10.1016/j.jpowsour.2006.12.093

    Article  CAS  Google Scholar 

  22. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586. https://doi.org/10.1016/j.jpowsour.2009.01.052

    Article  CAS  Google Scholar 

  23. Zhang J, Kong L-B, Wang B, Luo Y-C, Kang L (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met 159(3-4):260–266. https://doi.org/10.1016/j.synthmet.2008.09.018

    Article  CAS  Google Scholar 

  24. Xu G, Wang W, Qu X, Yin Y, Chu L, He B, Wu H, Fang J, Bao Y, Liang L (2009) Electrochemical properties of polyaniline in p-toluene sulfonic acid solution. Eur Polym J 45(9):2701–2707. https://doi.org/10.1016/j.eurpolymj.2009.05.016

    Article  CAS  Google Scholar 

  25. Palaniappan S, John A, Amarnath CA, Rao VJ (2004) Mannich-type reaction in solvent free condition using reusable polyaniline catalyst. J Mol Catal A 218(1):47–53. https://doi.org/10.1016/j.molcata.2004.04.010

    Article  CAS  Google Scholar 

  26. Sathiyanarayanan S, Jeyaprabha C, Venkatachari G (2008) Influence of metal cations on the inhibitive effect of polyaniline for iron in 0.5 M H 2 SO 4. Mater Chem Phys 107(2-3):350–355. https://doi.org/10.1016/j.matchemphys.2007.07.024

    Article  CAS  Google Scholar 

  27. Dhibar S, Bhattacharya P, Hatui G, Sahoo S, Das C (2014) Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain Chem Eng 2(5):1114–1127. https://doi.org/10.1021/sc5000072

    Article  CAS  Google Scholar 

  28. Li J, Cui M, Lai Y, Zhang Z, Lu H, Fang J, Liu Y (2010) Investigation of polyaniline co-doped with Zn 2+ and H+ as the electrode material for electrochemical supercapacitors. Synth Met 160(11-12):1228–1233. https://doi.org/10.1016/j.synthmet.2010.03.014

    Article  CAS  Google Scholar 

  29. Chen S-A, Lin L-C (1995) Polyaniline doped by the new class of dopant, ionic salt: structure and properties. Macromolecules 28(4):1239–1245. https://doi.org/10.1021/ma00108a062

    Article  CAS  Google Scholar 

  30. Ryu KS, Moon BW, Joo J, Chang SH (2001) Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution. Polymer 42(23):9355–9360. https://doi.org/10.1016/S0032-3861(01)00522-5

    Article  CAS  Google Scholar 

  31. Saprigin A, Brenneman K, Lee W, Long S, Kohlman R, Epstein A (1999) Li+ doping-induced localization in polyaniline. Synth Met 100(1):55–59. https://doi.org/10.1016/S0379-6779(98)00173-8

    Article  CAS  Google Scholar 

  32. Yang C, Chen C (2005) Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synth Met 153(1-3):133–136. https://doi.org/10.1016/j.synthmet.2005.07.136

    Article  CAS  Google Scholar 

  33. Izumi CM, Constantino VR, Ferreira AMC, Temperini ML (2006) Spectroscopic characterization of polyaniline doped with transition metal salts. Synth Met 156(9-10):654–663. https://doi.org/10.1016/j.synthmet.2005.12.023

    Article  CAS  Google Scholar 

  34. Xu H, Wu J, Li C, Zhang J, Liu J (2015) Investigation of polyaniline films doped with Fe 3+ as the electrode material for electrochemical supercapacitors. Electrochim Acta 165:14–21. https://doi.org/10.1016/j.electacta.2015.01.224

    Article  CAS  Google Scholar 

  35. Dhibar S, Sahoo S, Das CK (2013) Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: superior electrode material for supercapacitor applications. Polym Compos 34(4):517–525. https://doi.org/10.1002/pc.22456

    Article  CAS  Google Scholar 

  36. Khalid M, Tumelero MA, Zoldan VC, Cid CCP, Franceschini DF, Timm RA et al (2014) Polyaniline nanofibers–graphene oxide nanoplatelets composite thin film electrodes for electrochemical capacitors. RSC Adv 4(64):34168–34178. https://doi.org/10.1039/C4RA06145D

    Article  CAS  Google Scholar 

  37. Mu B, Liu P, Wang A (2013) Synthesis of polyaniline/carbon black hybrid hollow microspheres by layer-by-layer assembly used as electrode materials for supercapacitors. Electrochim Acta 88:177–183. https://doi.org/10.1016/j.electacta.2012.10.025

    Article  CAS  Google Scholar 

  38. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nano 3:212–216

    CAS  Google Scholar 

  39. Lu X, Dou H, Yang S, Hao L, Zhang L, Shen L, Zhang F, Zhang X (2011) Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim Acta 56(25):9224–9232. https://doi.org/10.1016/j.electacta.2011.07.142

    Article  CAS  Google Scholar 

  40. Xu H, Li J, Peng Z, Zhuang J, Zhang J (2013) Investigation of polyaniline films doped with Ni 2+ as the electrode material for electrochemical supercapacitors. Electrochim Acta 90:393–399. https://doi.org/10.1016/j.electacta.2012.12.047

    Article  CAS  Google Scholar 

  41. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Cu 2+ as the electrode material for electrochemical supercapacitors. RSC Adv 4(11):5547–5552. https://doi.org/10.1039/c3ra45794j

    Article  CAS  Google Scholar 

  42. Ghosh D, Giri S, Mandal A, Das CK (2013) Supercapacitor based on H+ and Ni 2+ co-doped polyaniline–MWCNTs nanocomposite: synthesis and electrochemical characterization. RSC Adv 3(29):11676–11685. https://doi.org/10.1039/c3ra40955d

    Article  CAS  Google Scholar 

  43. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Zn2+ as the electrode material for electrochemical supercapacitors. J Solid State Electrochem 18(3):813–819. https://doi.org/10.1007/s10008-013-2327-5

    Article  CAS  Google Scholar 

  44. Xu H, Tang J, Chen Y, Liu J, Pu J, Li Q (2017) Zn2+-doped polyaniline/graphene oxide as electrode material for electrochemical supercapacitors. J Electron Mater 46:1–8

    Article  Google Scholar 

  45. Ghosh D, Giri S, Mandal A, Das CK (2013) H+, Fe 3+ codoped polyaniline/MWCNTs nanocomposite: superior electrode material for supercapacitor application. Appl Surf Sci 276:120–128. https://doi.org/10.1016/j.apsusc.2013.03.044

    Article  CAS  Google Scholar 

  46. Xu H, J-X W, Li C-L, Zhang J-L, Wang X-X (2015) Investigation of polyaniline films doped with Co2+ as the electrode material for electrochemical supercapacitors. Ionics 21(4):1163–1170. https://doi.org/10.1007/s11581-014-1267-0

    Article  CAS  Google Scholar 

  47. Park JH, Ko JM, Park OO, Kim D-W (2002) Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J Power Sources 105(1):20–25. https://doi.org/10.1016/S0378-7753(01)00915-6

    Article  CAS  Google Scholar 

  48. Mi H, Zhang X, Ye X, Yang S (2008) Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J Power Sources 176(1):403–409. https://doi.org/10.1016/j.jpowsour.2007.10.070

    Article  CAS  Google Scholar 

  49. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi J-Y, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115(35):17612–17620. https://doi.org/10.1021/jp205568v

    Article  CAS  Google Scholar 

  50. Zhou Q, Li Y, Huang L, Li C, Shi G (2014) Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J Mater Chem A 2(41):17489–17494. https://doi.org/10.1039/C4TA03639E

    Article  CAS  Google Scholar 

  51. Kalambate PK, Dar RA, Karna SP, Srivastava AK (2015) High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sources 76:262–270

    Article  Google Scholar 

  52. Ghasemi S, Hosseini SR, Asen P (2015) Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage. Electrochim Acta 160:337–346. https://doi.org/10.1016/j.electacta.2015.02.002

    Article  CAS  Google Scholar 

  53. Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni (OH) 2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrog Energy 39(15):7876–7884. https://doi.org/10.1016/j.ijhydene.2014.03.067

    Article  CAS  Google Scholar 

  54. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2:37–54

    Google Scholar 

  55. Liu Y, Deng R, Wang Z, Liu H (2012) Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J Mater Chem 22(27):13619–13624. https://doi.org/10.1039/c2jm32479b

    Article  CAS  Google Scholar 

  56. Hu F, Li W, Zhang J, Meng W (2014) Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. J Mater Sci Technol 30(4):321–327. https://doi.org/10.1016/j.jmst.2013.10.009

    Article  CAS  Google Scholar 

  57. Xu J, Wang K, S-Z Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9):5019–5026. https://doi.org/10.1021/nn1006539

    Article  CAS  Google Scholar 

  58. Yang Y, Kang M, Fang S, Wang M, He L, Zhao J et al (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors Actuators B Chem 63:214–221

    Google Scholar 

  59. Van Hoa N, Quyen TTH, Van Hieu N, Ngoc TQ, Thinh PV, Dat PA et al (2017) Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors. Synth Met 223:192–198

    Article  Google Scholar 

  60. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1139

    Article  Google Scholar 

  61. Zha D, Xiong P, Wang X (2015) Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. Electrochim Acta 185:218–228. https://doi.org/10.1016/j.electacta.2015.10.139

    Article  CAS  Google Scholar 

  62. Dong H, Prasad S, Nyame V, Jones WE (2004) Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates. Chem Mater 16(3):371–373. https://doi.org/10.1021/cm0347180

    Article  CAS  Google Scholar 

  63. Jafri RI, Mishra AK, Ramaprabhu S (2011) Polyaniline–MnO 2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601–17605

    Article  Google Scholar 

  64. Zhou D, Che B, Lu X (2017) Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials. J Mater Chem C 5(7):1758–1176. https://doi.org/10.1039/C6TC05216A

    Article  CAS  Google Scholar 

  65. Yan X, Chen J, Yang J, Xue Q, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide− polyaniline and graphene− polyaniline hybrid papers. ACS Appl Mater Interfaces 2(9):2521–2529. https://doi.org/10.1021/am100293r

    Article  CAS  Google Scholar 

  66. Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  67. Mu B, Zhang W, Shao S, Wang A (2014) Glycol assisted synthesis of graphene–MnO 2–polyaniline ternary composites for high performance supercapacitor electrodes. Phys Chem Chem Phys 16(17):7872–7880. https://doi.org/10.1039/c4cp00280f

    Article  CAS  Google Scholar 

  68. Zhou H, Han G, Xiao Y, Chang Y, Zhai H-J (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267. https://doi.org/10.1016/j.jpowsour.2014.04.039

    Article  CAS  Google Scholar 

  69. Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Manyala N (2015) Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochim Acta 151:386–392. https://doi.org/10.1016/j.electacta.2014.11.051

    Article  CAS  Google Scholar 

  70. Pendashteh A, Mousavi MF, Rahmanifar MS (2013) Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim Acta 88:347–357. https://doi.org/10.1016/j.electacta.2012.10.088

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of this work by the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran. They are grateful to Institute of National Science Foundation (INSF, 94/S/44025, Iran) for financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahrokhian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asen, P., Shahrokhian, S. & Zad, A.I. Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications. J Solid State Electrochem 22, 983–996 (2018). https://doi.org/10.1007/s10008-017-3831-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3831-9

Keywords

Navigation