Skip to main content

Advertisement

Log in

Dual-functional electrochromic and energy-storage electrodes based on tungsten trioxide nanostructures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, high-performance dual-functional electrodes based on tungsten trioxide (WO3) nanostructures are developed, which successfully realize the combination of electrochromism and energy storage. The WO3 nanostructures with various morphologies (nanospindles, nanopetals, nanosheets, and nanobricks) were prepared via a facile hydrothermal process. It has been found that the WO3 nanosheets possess large surface area and porous architecture, significantly increasing the amount of active sites and facilitating the transport of Li+ ions. As dual-functional electrode, WO3 nanosheets present enhanced electrochemical properties including wide optical modulation (64.5%), fast switching time (6.6/3.8 s), great coloration efficiency (48.9 cm2 C−1), and high areal capacitance (14.9 mF cm−2). Furthermore, the WO3 nanosheets could bridge electrochromic behaviors with energy storage by changing color during the charge/discharge processes. The results demonstrate great potential of WO3 nanosheets for electrochromism and energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 124:103–110

    Article  CAS  Google Scholar 

  2. Wang P, Hu J, Cao G, Zhang S, Zhang P, Liang C, Wang Z, Shao G (2018) Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance. Appl Surf Sci 435:1150–1158

    Article  CAS  Google Scholar 

  3. Runnerstrom EL, Llordes A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50(73):10555–10572

    Article  CAS  Google Scholar 

  4. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan H (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10):5008–5048

    Article  CAS  PubMed  Google Scholar 

  5. Xiao X, Ding T, Yuan L, Shen Y, Zhong Q, Zhang X, Cao Y, Hu B, Zhai T, Gong L, Chen J, Tong Y, Zhou J, Wang ZL (2012) WO3-x/MoO3-x Core/Shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2(11):1328–1332

    Article  CAS  Google Scholar 

  6. Bi Z, Li X, Chen Y, He X, Xu X, Gao X (2017) Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white. ACS Appl Mater Interfaces 9(35):29872–29880

    Article  CAS  PubMed  Google Scholar 

  7. Cai GF, Cui MQ, Kumar V, Darmawan P, Wang JX, Wang X, Eh ALS, Qian K, Lee PS (2016) Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem Sci 7(2):1373–1382

    Article  CAS  PubMed  Google Scholar 

  8. Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19(7):394–402

    Article  CAS  Google Scholar 

  9. Yeh M, Lin L, Yang P, Wang Z (2015) Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9(5):4757–4765

    Article  CAS  PubMed  Google Scholar 

  10. Cai G, Wang J, Lee PS (2016) Next-generation multifunctional electrochromic devices. Acc Chem Res 49(8):1469–1476

    Article  CAS  PubMed  Google Scholar 

  11. Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2013) Stretchable and wearable electrochromic devices. ACS Nano 8(1):316–322

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Bi Z, Li X, Xu X, Zhang S, Hu X (2017) High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochim Acta 224:534–540

    Article  CAS  Google Scholar 

  13. Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404

    Article  CAS  PubMed  Google Scholar 

  14. Cai G, Wang X, Cui M, Darmawan P, Wang J, AL-S E, Lee PS (2015) Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12:258–267

    Article  CAS  Google Scholar 

  15. Huang Y, Zhu M, Huang Y, Pei Z, Li H, Wang Z, Xue Q, Zhi C (2016) Multifunctional energy storage and conversion devices. Adv Mater 28(38):8344–8364

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Li G, Sun J, Zou R, Xu K, Sun Y, Chen Z, Yang J, Hu J (2013) Hierarchical heterostructures of MnO2 nanosheets or nanorods grown on Au-coated Co3O4 porous nanowalls for high-performance pseudocapacitance. Nanoscale 5(7):2901–2908

    Article  CAS  PubMed  Google Scholar 

  17. Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U (2012) A nanostructured electrochromic supercapacitor. Nano Lett 12(4):1857–1862

    Article  CAS  PubMed  Google Scholar 

  18. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522

    Article  CAS  PubMed  Google Scholar 

  19. Inamdar AI, Kim J, Jo Y, Woo H, Cho S, Pawar SM, Lee S, Gunjakar JL, Cho Y, Hou B, Cha S, Kwak J, Park Y, Kim H, Im H (2017) Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Sol Energy Mater Sol Cells 166:78–85

    Article  CAS  Google Scholar 

  20. Xia XH, Ku ZL, Zhou D, Zhong Y, Zhang YQ, Wang YD, Huang MJ, Tu JP, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz 3(6):588–595

    Article  CAS  Google Scholar 

  21. Cai G, Tu J, Zhou D, Li L, Zhang J, Wang X, Gu C (2014) The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm 16(30):6866–6872

    Article  CAS  Google Scholar 

  22. Hu J, Wang L, Zhang P, Liang C, Shao G (2016) Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J Power Sources 328:28–36

    Article  CAS  Google Scholar 

  23. Poongodi S, Kumar PS, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S (2015) Synthesis of hierarchical WO3 nanostructured thin films with enhanced electrochromic performance for switchable smart windows. RSC Adv 5(117):96416–96427

    Article  CAS  Google Scholar 

  24. Xiao Y, Xu C, Zhang W (2017) Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J Solid State Electrochem 21(11):3355–3364

    Article  CAS  Google Scholar 

  25. Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1(24):7167–7173

    Article  CAS  Google Scholar 

  26. Huang B, Lin T, Liu Y (2015) WO3/TiO2 core-shell nanostructure for high performance energy-saving smart windows. Sol Energy Mater Sol Cells 133:32–38

    Article  CAS  Google Scholar 

  27. Wang J, Zhang L, Yu L, Jiao Z, Xie H, Lou X, Sun X (2014) A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat Commun 5:4921

    Article  CAS  PubMed  Google Scholar 

  28. Peng M, Zhang Y, Song L, Yin X, Wang P, Wu L, Hu X (2017) Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. J Inorg Mater 32(3):287–292

    Article  Google Scholar 

  29. Huang X, Liu H, Zhang X, Jiang H (2015) High performance all-solid-state flexible micro-pseudocapacitor based on hierarchically nanostructured tungsten trioxide composite. ACS Appl Mater Interfaces 7(50):27845–27852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samu GF, Pencz K, Janáky C, Rajeshwar K (2015) On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. J Solid State Electrochem 19(9):2741–2751

    Article  CAS  Google Scholar 

  31. Hu J, Wang P, Liu P, Cao G, Wang Q, Wei M, Mao J, Liang C, Shao G (2016) In situ fabrication of nano porous NiO-capped Ni3P film as anode for li-ion battery with different lithiation path and significantly enhanced electrochemical performance. Electrochim Acta 220:258–266

    Article  CAS  Google Scholar 

  32. Sun W, Yeung M, Lech A, Lin C, Lee C, Li T, Duan X, Zhou J, Kaner RB (2015) High surface area tunnels in hexagonal WO3. Nano Lett 15(7):4834–4838

    Article  CAS  PubMed  Google Scholar 

  33. Zhou D, Shi F, Xie D, Wang D, Xia X, Wang X, Gu C, Tu J (2016) Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J Colloid Interface Sci 465:112–120

    Article  CAS  PubMed  Google Scholar 

  34. Reyes-Gil KR, Stephens ZD, Stavila V, Robinson DB (2015) Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl Mater Interfaces 7(4):2202–2213

    Article  CAS  PubMed  Google Scholar 

  35. Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2010) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11(1):203–208

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh K, Roy A, Tripathi S, Ghule S, Singh AK, Ravishankar N (2017) Insights into nucleation, growth and phase selection of WO3: morphology control and electrochromic properties. J Mater Chem C 5(29):7307–7316

    Article  CAS  Google Scholar 

  37. Wang L, Fan J, Cao Z, Zheng Y, Yao Z, Shao G, Hu J (2014) Fabrication of predominantly Mn4+-doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts. Chem Asian J 9(7):1904–1912

    Article  CAS  PubMed  Google Scholar 

  38. Park H, Kim DS, Hong SY, Kim C, Yun JY, Oh SY, Jin SW, Jeong YR, Kim GT, Ha JS (2017) A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale 9(22):7631–7640

    Article  CAS  PubMed  Google Scholar 

  39. Bi Z, Li X, Chen Y, Xu X, Zhang S, Zhu Q (2017) Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochim Acta 227:61–68

    Article  CAS  Google Scholar 

  40. Chuminjak Y, Daothong S, Reanpang P, Mensing JP, Phokharatkul D, Jakmunee J, Wisitsoraat A, Tuantranont A, Singjai P (2015) Electrochemical energy-storage performances of nickel oxide films prepared by a sparking method. RSC Adv 5(83):67795–67802

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0201103); the National Natural Science Foundation of China (Grant No. 51572280); and the Foundation of the Shanghai Committee for Science and Technology (Grant No. 15JC1403600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Li.

Electronic supplementary material

ESM 1

(DOCX 8552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, X., Bi, Z. et al. Dual-functional electrochromic and energy-storage electrodes based on tungsten trioxide nanostructures. J Solid State Electrochem 22, 2579–2586 (2018). https://doi.org/10.1007/s10008-018-3959-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3959-2

Keywords

Navigation