Skip to main content
Log in

A novel sensor for the determination of Hg2+ in waters based on octadentate ligand immobilized multi-walled carbon nanotube attached to paraffin wax impregnated graphite electrodes (PIGE)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the synthesised octadentate ligand immobilised multi-walled carbon nanotubes (MWCNTs) modified electrode as an electrochemical sensor of Hg2+ is reported. The octadentate/MWCNTs composites were coated on the polished surface of paraffin impregnated graphite electrode for fabricating the enhanced electrochemical sensing platform for Hg2+ determination. The octadentate ligand contains four N and four O donor atoms which coordinate with the metal ion in stripping medium have been investigated. Surface morphology of the fabricated modified electrode was studied using scanning electron microscope (SEM). The modified electrode was characterised by electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWASV). Further various factors such as preconcentration time, effects of pH and different electrolytes were optimised for the detection of Hg2+. Under the optimised condition, anodic stripping voltammetry of Hg2+ showed a response in a linear range from 2.4 - 180 nM and the limit of detection was 0.8 nM for Hg2+ (S/N = 3). Interference studies with Cd2+,As3+,Cu2+, Ag+,Ni2+,Fe3+,Zn2+,Sn2+ and Pb2+ showed an insignificant effect on the electrochemical response of Hg2+. The proposed modified electrode exhibited an excellent performance with good reproducibility, selectivity and stability. The practical application of the modified electrode was also evaluated by the detection of Hg2+ in well water and lake water samples with good recovery results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Afkhamia A, Bagherib H, Khoshsafara H, Tehranic MS, Masoumeh Tabatabaeed M, Shirzadmehra A (2012) Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbonnanotubes and a new synthesized Schiff base. Anal Chim Acta 746:98–106

    Article  CAS  Google Scholar 

  2. Sanchez J, Castillo E, Corredor P, Agreda J (2011) Determination of mercury by anodic stripping voltammetry in aqua regia extracts. Port Electrochim Acta 29(3):197–210

    Article  CAS  Google Scholar 

  3. Yin Z, Wu J, Yang Z (2010) A sensitive mercury (II) sensor based on CuO nanoshuttles/poly(thionine) modified glassy carbon electrode. Microchim Act 170(3-4):307–312

    Article  CAS  Google Scholar 

  4. Abollino O, Giacomino A, Piscionieri G, Mentasti E (2008) Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis 20(1):75–83

    Article  CAS  Google Scholar 

  5. Jayaseelan P, Akila E, Usha Rani M, Rajavel R (2016) Synthesis, spectral characterization, electrochemical, anti-microbial, DNA binding and cleavage studies of new binuclear Schiff base metal(II) complexes derived from o-hydroxyacetophenone. J Saudi Chem Soc 20(6):625–634

    Article  CAS  Google Scholar 

  6. Tu Y, Lin Y, Yantasee W, Reng Z (2005) Carbon nanotubes based nanoelectrode arrays: fabrication evaluation and application in voltammetric analysis. Electroanalysis 17(1):79–84

    Article  CAS  Google Scholar 

  7. Bankim J, Ashiwini S, Srivastava (2011) Biometic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Electrochim Acta 56:4188–4196

    Article  CAS  Google Scholar 

  8. Golikand AM, Asgari M, Maraghah MG, Lohrasbi E (2009) Carbon nanotube-modified glassy carbon electrode for anodic stripping voltammetric detection of Uranyle. J Appl Electrochemi 39(1):65–70

    Article  CAS  Google Scholar 

  9. Gadapudi RP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  10. Ulloa PJ, Rosales PC, Nunez-Vergara LJ, Squella JA (2011) Adsorptive stripping voltammetric determination of nitroimidazole derivative on multi-walled carbon nanotube modified electrodes: influence of size and functionalization of nanotubes. J Braz Chemi Soc 22(7):1271–1278

    Article  Google Scholar 

  11. Chicharro M, Bermejo E, Mareno M, Sanchez A, Zapardiel A, Rivas G (2005) Adsorptive stripping voltammetric of amitrole at a multi-walled carbon nanotubes paste electrode. Electroanalysis 17:476–482

    Article  CAS  Google Scholar 

  12. Mohadesi A, Parvaresh S, Eshaghi Z, Karimi MA (2016) 4-Aminohippuric acid-functionalized carbon nanotubes for stripping voltammetric determination of copper (II) ions. Electrochemistry 84(3):138–142

    Article  CAS  Google Scholar 

  13. Bulska E, Kandler W, Pashawski P, Hulanickin A (1995) Atomic absorption spectrometric determination of mercury in soil standard reference material following microwave sample pretreatment. Microchim Acta 119(1-2):137–146

    Article  CAS  Google Scholar 

  14. Jamshid L, Manzoori JL, Mohammad H, Sorouraddin MH, Haji Shabani AM (1998) Determination of mercury by cold vapour atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. J Anal At Spectrom 13:305–308

    Article  Google Scholar 

  15. Fengxiang X, Dean Patterson HW, Xi Y, Maruthi Sridhar BB, Su Y (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air Soil Pollut 170:161–171

    Article  CAS  Google Scholar 

  16. Passariello B, Barbaro M, Quaresima S, Casciello A, Marabini A (1996) Determination of mercury by inductively coupled plasma-mass spectrometry. Microchemical 54(4):348–354

    Article  CAS  Google Scholar 

  17. Allibone J, Fatemian E, J Walker JP (1999) Determination of mercury in potable water by ICP-MS using gold as a stabilising agent. J Anal At Spectrom 14(2):235–239

    Article  CAS  Google Scholar 

  18. Stozhko NY, Malakhova NA, Fyodorov MV, Brainina KZ (2008) Modified carbon-containing electrode in stripping voltammetry of metals. J Solid State Electrochem 12(10):1185–1204

    Article  CAS  Google Scholar 

  19. Raghu GK, Sampath S, Pandurangappa M (2012) Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium. J Solid State Electrochem 16(5):1953–1963

    Article  CAS  Google Scholar 

  20. Afkhami A, Madrakian T, Ghaedi H, Khanmohammadi H (2012) Construction of a chemically modified electrode for the selective determination of nitrile and nitrate ions based on a new nanocomposite. Int J Electrochem Sci 66:255–264

    CAS  Google Scholar 

  21. Gholivand MB, Azadbakht A, Pashabadi A (2011) Simultaneous determination of trace zinc and cadmium by anodic stripping voltammetry using a polymeric film nanoparticle self-assembled electrode. Electroanalysis 23(2):364–370

    Article  CAS  Google Scholar 

  22. Salmanipour A, Taher MA (2011) An electrochemical sensor for stripping analysis of Pb(II) based on multiwalled carbon nanotube functionalized with 5-Br-PADAP. J Solid State Electrochem 15(11-12):2695–2702

    Article  CAS  Google Scholar 

  23. Mishra I, Bindu K, Bhattacharya S (2004) Synthesis spectroscopic studies, molecular structure optimization, and superoxide dismutase activity of copper(II) and zinc(lI) bipyridyl assisted supramolecular motifs containing octadentate Schiff base. Ind J Chem 43:315–319

    Google Scholar 

  24. Scholz F, Lange B (1992) Abrasive stripping voltammetry an electrochemical solid state spectroscopy of wide applicability. Trends Anal Chem 11(10):359–367

    Article  CAS  Google Scholar 

  25. Scholz F, Schröder U, Gulaboski R (2015) Electrochemistry of immobilized particles and droplets, Springer 2015

  26. Weia J, Yanga D, Chena H, Gaoa Y, Li H (2014) Stripping voltammetric determination of mercury(II) based on SWCNT-PhSH modified gold electrode. Sensors Actuators B 190:968–974

    Article  CAS  Google Scholar 

  27. Yantasee W, Lin Y, Zemanian TS, Fryxell GE (2003) Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst 128(5):467–472

    Article  CAS  PubMed  Google Scholar 

  28. Cesarino I, Marino G, Matos JR, Cavalheiro EC (2008) Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75(1):15–21

    Article  CAS  PubMed  Google Scholar 

  29. Rajabi HR, Roushani M, Shamsipur M (2013) Development of a highly selective voltammetric sensor for nanomolar detection of mercury ions using glassy carbon electrode modified with a novel ion imprinted polymeric nanobeads and multi-wall carbon nanotubes. J Electroanal Chem 693:16–22

    Article  CAS  Google Scholar 

  30. Selvan SK, Narayanan SS (2018) Synthesis and characterization of carbon nanotubes/asymmetric novel tetradentate ligand forming complexes on PIGE modified electrode for simultaneous determination of Pb(II) and Hg(II) in well water, lake water and well water using anodic stripping voltammetry. J Electroanal Chem 810:176–184

    Article  CAS  Google Scholar 

  31. Wu Z, Jiang L, Zhu Y, Xu C, Ye Y, Wang X (2012) Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 16(10):3171–3177

    Article  CAS  Google Scholar 

  32. Shahar T, Tal N, Mandler D (2013) The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II). J Solid State Electrochem 17(6):1543–1552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors gratefully acknowledges the financial assistance as JRF received from the Department of Science and Technology for DST-PURSE Program in support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Sriman Narayanan.

Electronic supplementary material

ESM 1

(DOC 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, J., Selvan, K.S. & Narayanan, S.S. A novel sensor for the determination of Hg2+ in waters based on octadentate ligand immobilized multi-walled carbon nanotube attached to paraffin wax impregnated graphite electrodes (PIGE). J Solid State Electrochem 22, 2879–2888 (2018). https://doi.org/10.1007/s10008-018-3984-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3984-1

Keywords

Navigation