Skip to main content
Log in

Two-step one-pot electrosynthesis and catalytic activity of xCoO–yCo(OH)2-supported silver nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Efficient two-step electrosynthesis of xCoO–yCo(OH)2 (CoOxHy)-supported silver nanoparticles (AgNPs) is carried out in N,N-dimethylformamide (DMF) using atmospheric oxygen as a reagent and mediator at the potentials of its reduction to the superoxide ion. In the first step, the reduction of oxygen in the presence of Co (II) ions added to the solution as a salt or generated upon dissolution of a Co anode by means of electrolysis results in a mixture of amorphous cobalt oxide CoO and its hydrated form Co (OH)2. The addition of Ag+ ions to the resulting solution of CoOxHy by similar methods results in two parallel reactions of Ag+ reduction to give AgNPs: reversible reduction by CoO and irreversible reduction by DMF. In the second step, oxygen-mediated electroreduction of CoO+ and residual quantities of Ag+ occurs, as well as regeneration of CoOxHy. The resulting spherical AgNPs are bound and stabilized by the CoOxHy matrix. Both steps occur quantitatively and consume the theoretical amount of electricity (2 F with respect to Co2+ in the first step and 1 F with respect to Ag+ in the second step). Depending on the production method, the size of the AgNPs varies in a range from 7±2 to 27±10 nm. The Ag/CoOxHy nanocomposites obtained exhibit catalytic activity in the p-nitrophenol reduction with sodium borohydride in an aqueous medium. Their activity caused by AgNPs significantly increases in the presence of cetyltrimethylammonium chloride (CTAC), a micelle-forming cationic surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pomogaylo AD, Rosenberg AS, Uflyand IE (2002) Nanoparticles of metals in polymers. Khimia, Moscow

    Google Scholar 

  2. Roldughin VI (2000) Quantum-size colloid metal systems. Russ Chem Rev 69:821–843

    CAS  Google Scholar 

  3. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  PubMed  Google Scholar 

  4. Suzdalev IP (2006) Nanotechnology. Physicochemistry of nanoclusters, nanostructures and nanomaterials. KomKniga, Moscow

    Google Scholar 

  5. Volkov VV, Kravchenko TA, Roldughin VI (2013) Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen. Russ Chem Rev 82:465–482

    Google Scholar 

  6. Dykman LA, Bogatyrev VA (2007) Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry. Russ Chem Rev 76:181–194

    CAS  Google Scholar 

  7. Kharisov BI, Kharissova OV, Ortiz-Mendez U (2012) Handbook of Less-Common Nanostructures. CRC Press, New York

    Google Scholar 

  8. Suh MP (2015) Metal-Organic Frameworks and Porous Coordination Polymers: Properties and Applications. Bull Jpn Soc Coord Chem 65:9–22

    Google Scholar 

  9. Caia X, Denga X, Xiea Z, Shia Y, Panga M, Lina J (2018) Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. Chem Eng J 358:369–378

    Google Scholar 

  10. Gao XW, Yang J, Song K, Luo WB, Dou SX, Kang YM (2018) Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media. J Mater Chem A 6:23445–23456

    CAS  Google Scholar 

  11. Sun Q, Zhai W, Hou G, Feng J, Zhang L, Si P, Guo S, Ci L (2018) In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes. ACS Sustain Chem Eng 6:15219–15227

    CAS  Google Scholar 

  12. Zhang S, Wu Q, Tang L, Hu Y, Wang M, Zhao J, Li M, Han J, Liu X, Wang H (2018) Individual High-Quality N-Doped Carbon Nanotubes Embedded with Nonprecious Metal Nanoparticles toward Electrochemical Reaction. ACS Appl Mater Interfaces 10:39757–39767

    CAS  PubMed  Google Scholar 

  13. Wua Y, Qiua X, Lianga F, Zhanga Q, Kooc A, Dai Y, Lei Y, Sunc X, Wua Y, Qiua X, Lianga F, Zhanga Q, Koo A, Dai Y, Lei Y, Sunc X (2019) A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Appl Catal B 241:407–414

    Google Scholar 

  14. Wu T, Ma J, Wang X, Liu Y, Xu H, Gao J, Wang W, Liu Y, Yan J (2013) Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotechnol 24:125301

    Google Scholar 

  15. Gan T, Wang Z, Shi Z, Zheng D, Sun J, Liu Y (2018) Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications. Biosens Bioelectron 112:23–30

    CAS  PubMed  Google Scholar 

  16. Wang L, Wang L, Zhang J, Wang H, Xiao FS (2018) Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeOx modification. Chin J Catal 39:1608–1614

    CAS  Google Scholar 

  17. Fedorenko S, Jilkin M, Nastapova N, Yanilkina V, Bochkova O, Buriliov V, Nizameev I, Nasretdinova G, Kadirov M, Mustafina A, Budnikova Y (2015) Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions. Colloids Surf A Physicochem Eng Asp 486:185–191

    CAS  Google Scholar 

  18. An K, Somorjai GA (2015) Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies. Catal Lett 145:233–248

    CAS  Google Scholar 

  19. Eremenko A, Smirnova N, Gnatiuk I, Linnik O, Vityuk N, Mukha Y, Korduban A (2011) In: Cuppoletti J (ed.) Silver and Gold Nanoparticles on Sol-Gel TiO2, ZrO2, SiO2 Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties, Nanocomposites and Polymers with Analytical Methods. InTech, Rijeka.

  20. Majhi SM, Naik GK, Lee HJ, Song HG, Lee CR, Lee IH, Yu YT (2018) Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors Actuators B Chem 268:223–231

    CAS  Google Scholar 

  21. Liu J, Zou S, Li S, Liao X, Hong Y, Xiao L, Fan J (2013) A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process. J Mater Chem A 1:4038–4047

    CAS  Google Scholar 

  22. Padbury RP, Halbur JC, Krommenhoek PJ, Tracy JB, Jur JS (2015) Thermal Stability of Gold Nanoparticles Embedded within Metal Oxide Frameworks Fabricated by Hybrid Modifications onto Sacrificial Textile Templates. Langmuir 31:1135–1141

    CAS  PubMed  Google Scholar 

  23. Lee SW, Song JT, Kim J, Oh J, Park JY (2018) Enhanced catalytic activity for CO oxidation by the metal–oxide perimeter of TiO2/nanostructured Au inverse catalysts. Nanoscale 10:3911–3917

    CAS  PubMed  Google Scholar 

  24. Zhang Z, Wu Q, Bu X, Hang Z, Wang Z, Wang Q, Ma Y (2018) In Situ Formation of Pt–Au Nanoparticles on Magnetic Composites Carriers: Tuning Catalytic Activity by Incorporation of Different Metal Oxides. Bull Kor Chem Soc 39:71–77

    CAS  Google Scholar 

  25. Liu M, Tang W, Xu Y, Yu H, Yin H, Zhao S, Zhou S (2018) Pd-SnO2/Al2O3 heteroaggregate nanocatalysts for selective hydrogenations of p-nitroacetophenone and p-nitrobenzaldehyde. Appl Catal 549:273–279

    CAS  Google Scholar 

  26. Supriya P, Srinivas BTV, Chowdeswari K, Naidu NVS, Sreedhar B (2018) Biomimetic synthesis of gum acacia mediated Pd-ZnO and Pd-TiO2 - Promising nanocatalysts for selective hydrogenation of nitroarenes. Mater Chem Phys 204:27–36

    CAS  Google Scholar 

  27. Han D, Zhang Z, Bao Z, Xing H, Ren Q (2018) Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Front Chem Sci Eng 12:24–31

    CAS  Google Scholar 

  28. Gilanizadeh M, Zeynizadeh B (2018) Binary copper and iron oxides immobilized on silica layered magnetite as a new reusable heterogeneous nanostructure catalyst for the Knoevenagel condensation in water. Res Chem Intermed 44:6053–6070

    CAS  Google Scholar 

  29. Aryanasab F (2016) A magnetically recyclable iron oxide-supported copper oxide nanocatalyst (Fe3O4-CuO) for one-pot synthesis of S-aryl dithiocarbamates under solvent-free conditions. RSC Adv 6:32018–32024

    CAS  Google Scholar 

  30. Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T (2009) CuO Nanoparticles Catalyzed C−N, C−O, and C−S Cross-Coupling Reactions: Scope and Mechanism. J Organomet Chem 74:1971–1976

    CAS  Google Scholar 

  31. Hu T, Wang Y, Liu Q, Zhang L, Wang H, Tang T, Chen W, Zhao M, Jia J (2017) In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Int J Hydrog Energy 42:25951–25959

    CAS  Google Scholar 

  32. Song FZ, Zhu QL, Yang X, Zhan WW, Pachfule P, Tsumori N, Xu Q (2018) Metal–Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. Adv Energy Mater 8:1701416

    Google Scholar 

  33. Kuriganova AB, Leontyev IN, Alexandrin AS, Maslova OA, Rakhmatullin AI, Smirnova NV (2017) Electrochemically synthesized Pt/TiO2/C catalysts for direct methanol fuel cell applications. Mendeleev Commun 27:67–69

    CAS  Google Scholar 

  34. Kuriganova AB, Leontyeva D. V, Ivanov S, Bund A, Smirnova NV (2016) Electrochemical dispersion technique for preparation of hybrid MOx/C supports and Pt/MOx/C electrocatalysts for low-temperature fuel cells. J Appl Electrochem 46:1245-1260

  35. Kuriganova AB, Smirnova NV (2014) Pt/SnOx/C composite material for electrocatalysis. Mendeleev Commun 24:351–352

    CAS  Google Scholar 

  36. Doronkin DE, Kuriganova AB, Leontyev IN, Baier S, Lichtenberg H, Smirnova NV, Grunwaldt JD (2016) Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts. Catal Lett 146:452–463

    CAS  Google Scholar 

  37. Battino R (1981) Solubility Data Series. Oxygen and Ozone, Pergamon, Oxford

    Google Scholar 

  38. Mann CK, Barnes KK (1970) Electrochemical Reactions in Nonaqueous Systems. Marcel Dekker Inc, New York

    Google Scholar 

  39. Zhang X, Guo L, Gan L, Zhang Y, Wang J, Johnson LR, Bruce PG, Peng Z (2017) LiO2: Cryosynthesis and Chemical/Electrochemical Reactivities. J Phys Chem Lett 8:2334–2338

    CAS  PubMed  Google Scholar 

  40. Yanilkin VV, Nastapova NV, Nasretdinova GR, Fazleeva RR, Osin YN (2016) Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF. Electrochem Commun 69:36–40

    CAS  Google Scholar 

  41. Yanilkin VV, Nastapova NV, Fazleeva RR, Nasretdinova GR, Sultanova ED, Ziganshina AY, Gubaidullin AT, Samigullina AI, Evtyugin VG, Vorob’ev VV, Osin YN (2018) Molecular Oxygen as Mediator in the Metal Nanoparticles’ Electrosynthesis in N,N-Dimethylformamide. Russ J Electrochem 54:265-282

  42. Yanilkin VV, Nasretdinova GR, Osin YN, Salnikov VV (2015) Anthracene-mediated electrochemical synthesis of metallic cobalt nanoparticles in solution. Electrochim Acta 168:82–88

    CAS  Google Scholar 

  43. Yanilkin VV, Fazleeva RR, Nasretdinova GR, Nastapova NV, Osin YN (2016) The role of solvent in methylviologen mediated electrosynthesis of silver nanoparticles stabilized with polyvinylpyrrolidone. Butlerov Commun 46:128–144

    Google Scholar 

  44. Vijayanandan AS, Balakrishnan RM (2018) Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag 218:442–450

    CAS  Google Scholar 

  45. Barakat NAM, Khil MS, Sheikh FA, Kim HY (2008) Synthesis and Optical Properties of Two Cobalt Oxides (CoO and Co3O4) Nanofibers Produced by Electrospinning Process. J Phys Chem C 112:12225–12233

    CAS  Google Scholar 

  46. Dubeya S, Kumarb J, Kumarb A, Sharmaa YC (2018) Facile and green synthesis of highly dispersed cobalt oxide (Co3O4) nanopowder: Characterization and screening of its eco-toxicity. Adv Powder Technol 29:2583–2590

    Google Scholar 

  47. Glemser O (1963) Cobalt (II) Hydroxide. In: Brauer G (ed) Handbook of Preparative Inorganic Chemistry. 2nd Academic Press, New York

    Google Scholar 

  48. Pastoriza-Santos I, Liz-Marzán LM (2000) Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure Appl Chem 72:83–90

    CAS  Google Scholar 

  49. Manna S, Batabyal SK, Nandi AK (2006) Preparation and Characterization of Silver-Poly (vinylidene fluoride) Nanocomposites: Formation of Piezoelectric Polymorph of Poly (vinylidene fluoride). J Phys Chem B 110:12318–12326

    CAS  PubMed  Google Scholar 

  50. Galus Z (1976) Fundamentals of Electrochemical Analysis. Ellis Horwood, New York

    Google Scholar 

  51. Tafesh AM, Weiguny J (1996) A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into Aromatic Amines, Isocyanates, Carbamates, and Ureas Using CO. Chem Rev 96:2035–2052

    CAS  PubMed  Google Scholar 

  52. Astruc D (2008) Nanoparticles and Catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  53. Lara P, Philippot K (2014) The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview. Catal Sci Technol 4:2445–2465

    CAS  Google Scholar 

  54. Babji P, Rao VL (2016) Catalytic reduction of 4-Nitrophenol to 4-Aminophenol by using Fe2O3-Cu2O-TiO2 nanocomposite. Int J Chem Stud 4:123–127

    CAS  Google Scholar 

  55. Yaseen M, Shah Z, Veses RC, Dias SLP, Lima ÉC, dos Reis GS, Vaghetti JCP, Alencar WSD, Mehmood K (2017) Photocatalytic Studies of TiO2/SiO2 Nanocomposite Xerogels. J Anal Bioanal Tech 8:1–4

    Google Scholar 

  56. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587

    PubMed  Google Scholar 

  57. Gu S, Wunder S, Lu Y, Ballauff M, Rademann K, Fenger R, Jaquet B, Zaccone A (2014) Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J Phys Chem C 118:18618–18625

    CAS  Google Scholar 

  58. Nasretdinova GR, Fazleeva RR, Osin YN, Evtugyn VG, Gubaidullin AT, Ziganshina AY, Yanilkin VV (2018) Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC. Electrochim Acta 285:149–163

    CAS  Google Scholar 

Download references

Acknowledgments

IR spectra recording and X-ray analysis were carried out using the equipment of the Distributed Spectral-Analytical Center of Shared Facilities of the Federal Research Center of Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy V. Yanilkin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R. et al. Two-step one-pot electrosynthesis and catalytic activity of xCoO–yCo(OH)2-supported silver nanoparticles. J Solid State Electrochem 24, 829–842 (2020). https://doi.org/10.1007/s10008-020-04526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04526-0

Keywords

Navigation