Skip to main content

Advertisement

Log in

Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, different cobalt-based mixed transition metal oxides (MTMOs) were fabricated by hydrothermal process followed by calcination. Doping Co3O4 with other transition metals, such as Ni, Cu, and Mn, resulted in a fascinating morphological transformation from quasi-spherical nanoparticles to hierarchical micro/nanostructures. Hollow urchin-like NiCo2O4 exhibited a high specific surface area which led to excellent electrochemical performance towards oxygen evolution reaction (OER). It achieved a low overpotential of about 309 mV at 10 mA/cm2 current density, which is comparable to other reported electrocatalysts. Cyclic voltammetry (CV) technique revealed the redox processes that occur on the surface of NiCo2O4 and supported that Co4+ could be the active center during electrocatalysis. In general, the excellent electrocatalytic activity, stability, and reversibility of NiCo2O4 in alkaline condition suggest its applicability as an OER electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan L, Zhu B, Chen M et al (2012) High performance transition metal oxide composite cathode for low temperature solid oxide fuel cells. J Power Sources 203:65–71

    CAS  Google Scholar 

  2. Menezes P, Indra A, Zaharieva I et al (2019) Helical cobalt borophosphates to master durable overall water-splitting. Energy Environ Sci 12:988–999

    CAS  Google Scholar 

  3. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43(22):7746–7786

    CAS  PubMed  Google Scholar 

  4. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sust Energ Rev 81:1690–1704

    CAS  Google Scholar 

  5. Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang CY (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134(22):9054–9057

    CAS  PubMed  Google Scholar 

  6. Fang M, Gao W, Dong G et al (2016) Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 27:247–254

    CAS  Google Scholar 

  7. Sapountzi FM, Gracia JM, Weststrate CJ (Kee. J, et al (2017) Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 58:1–35

  8. Suen NT, Hung SF, Quan Q et al (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    CAS  PubMed  Google Scholar 

  9. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404

    CAS  PubMed  Google Scholar 

  10. Frydendal R, Paoli EA, Knudsen BP et al (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081

    CAS  Google Scholar 

  11. Stucki IS, Lewerenz HJ (1983) XPS studies of oxygen evolution on Ru and RuO2 anodes. J Electrochem Soc 130:825–829

    Google Scholar 

  12. Antolini E (2014) Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal 4:1426–1440

    CAS  Google Scholar 

  13. Maiyalagan T, Jarvis KA, Therese S et al (2014) Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat Commun 5:1–8

    Google Scholar 

  14. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL (2014) Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136(32):11452–11464

    CAS  PubMed  Google Scholar 

  15. Lyons MEG, Brandon MP (2008) The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part ii - cobalt. Int J Electrochem Sci 3:1425–1462

    CAS  Google Scholar 

  16. Lu Z, Wang H, Kong D et al (2014) Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat Commun 5:1–7

    Google Scholar 

  17. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39:15627–15638

    CAS  Google Scholar 

  18. Osgood H, Devaguptapu SV, Xu H et al (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11:601–625

    CAS  Google Scholar 

  19. Sun C, Rajasekhara S, Chen Y, Goodenough JB (2011) Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. Chem Commun 47:12852–12854

    CAS  Google Scholar 

  20. Yu XY, Yao XZ, Luo T, Jia Y, Liu JH, Huang XJ (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6(5):3689–3695

    CAS  PubMed  Google Scholar 

  21. Li M, Xiong Y, Liu X, Bo X, Zhang Y, Han C, Guo L (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7(19):8920–8930

    CAS  PubMed  Google Scholar 

  22. Wang HY, Hung SF, Chen HY, Chan TS, Chen HM, Liu B (2016) In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J Am Chem Soc 138(1):36–39

    CAS  PubMed  Google Scholar 

  23. Selvakumar K, Senthil Kumar SM, Thangamuthu R et al (2014) Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium. Int J Hydrog Energy 39:21024–21036

    CAS  Google Scholar 

  24. Shi H, Zhao G (2014) Water oxidation on spinel nico2o4 nanoneedles anode: microstructures, specific surface character, and the enhanced electrocatalytic performance. J Phys Chem C 118:25939–25946

    CAS  Google Scholar 

  25. Lambert TN, Vigil JA, White SE, Davis DJ, Limmer SJ, Burton PD, Coker EN, Beechem TE, Brumbach MT (2015) Electrodeposited NixCo3-xO4 nanostructured films as bifunctional oxygen electrocatalysts. Chem Commun 51(46):9511–9514

    CAS  Google Scholar 

  26. Hou L, Bao R, Chen Z et al (2016) Comparative investigation of hollow mesoporous NiCo2S4 ellipsoids with enhanced pseudo-capacitances towards high-performance asymmetric supercapacitors. Electrochim Acta 214:76–84

    CAS  Google Scholar 

  27. Silambarasan M, Padmanathan N, Ramesh PS, Geetha D (2015) Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties. Mater Res Express 3:1–10

    Google Scholar 

  28. Menezes P, Indra A, Gonzales-Flores D et al (2016) High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catal 5:2017–2027

    Google Scholar 

  29. Su YZ, Xu QZ, Zhong QS et al (2014) NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter. J Alloys Compd 617:115–119

    CAS  Google Scholar 

  30. Dahonog LA, Balela MDL (2018) Hydrothermal synthesis of NiCo2O4 nanowires on carbon fiber paper for hydrogen evolution catalyst. Key Eng Mater 775:139–143

    Google Scholar 

  31. Acedera RAE, Balela MDL (2019) Hierarchical urchin-like spinel CuxCo3-xO4 particles as oxygen evolution reaction catalyst in alkaline medium. IOP Conference Series: Maters Sci Eng 617:012004

    CAS  Google Scholar 

  32. Prabu M, Ketpang K, Shanmugam S (2014) Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 6(6):3173–3181

    CAS  PubMed  Google Scholar 

  33. Hamdani M, Singh RN, Chartier P (2010) Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577

    CAS  Google Scholar 

  34. Han X, Wahl S, Russo PA, Pinna N (2018) Cobalt-assisted morphology and assembly control of co-doped ZnO nanoparticles. Nanomaterials 8:249

    CAS  PubMed Central  Google Scholar 

  35. Caputo G, Pinna N (2013) Nanoparticle self-assembly using π-π interactions. J Mater Chem A 1:2370–2378

    CAS  Google Scholar 

  36. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437(7059):664–670

    CAS  PubMed  Google Scholar 

  37. Grzelczak M, Vermant J, Furst EM, Liz-marza LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    CAS  PubMed  Google Scholar 

  38. Qi J, Zhang W, Xiang R et al (2015) Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv Sci 2:1–8

    Google Scholar 

  39. Zhang SR, Hu ZB, Liu KY et al (2015) Synthesis and characterization of porous cobalt oxide/copper oxide nanoplate as novel electrode material for supercapacitors. Trans Nonferrous Metals Soc China 25:4054–4062

    CAS  Google Scholar 

  40. Béjar J, Álvarez-Contreras L, Ledesma-García J et al (2019) Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. J Electroanal Chem 847:113190

    Google Scholar 

  41. Guria AK, Pradhan N (2016) Doped or not doped: ionic impurities for influencing the phase and growth of semiconductor nanocrystals. Chem Mater 28:5224–5237

    CAS  Google Scholar 

  42. Yang Y, Jin Y, He H, Wang Q, Tu Y, Lu H, Ye Z (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132(38):13381–13394

    CAS  PubMed  Google Scholar 

  43. Gupta SM, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Cent Eur J Chem 10:279–294

    CAS  Google Scholar 

  44. De Faria LA, Prestat M, Koenig JF et al (1998) Surface properties of Ni + Co mixed oxides: a study by X-rays, XPS, BET and PZC. Electrochim Acta 44:1481–1489

    Google Scholar 

  45. Lakehal A, Benrabah B, Bouaza A et al (2018) Tuning of the physical properties by various transition metal doping in Co3O4: TM (TM = Ni, Mn, Cu) thin films: a comparative study. Chin J Phys 56:1845–1852

    CAS  Google Scholar 

  46. Song W, Ren Z, Chen SY, Meng Y, Biswas S, Nandi P, Elsen HA, Gao PX, Suib SL (2016) Ni- and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl Mater Interfaces 8(32):20802–20813

    CAS  PubMed  Google Scholar 

  47. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426

    CAS  Google Scholar 

  48. Karmakar A, Srivastava SK (2017) Interconnected copper cobaltite nanochains as efficient electrocatalysts for water oxidation in alkaline medium. ACS Appl Mater Interfaces 9(27):22378–22387

    CAS  PubMed  Google Scholar 

  49. Jung S, McCrory CCL, Ferrer IM et al (2016) Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J Mater Chem A 4:3068–3076

    CAS  Google Scholar 

  50. Wu J, Xue Y, Yan X et al (2012) Co 3O 4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res 5:521–530

    CAS  Google Scholar 

  51. Chou NH, Ross PN, Bell AT, Tilley TD (2011) Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem 4(11):1566–1569

    CAS  PubMed  Google Scholar 

  52. Tahir M, Mahmood N, Zhang X et al (2015) Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res 8:3725–3736

    CAS  Google Scholar 

  53. Bikkarolla SK, Papakonstantinou P (2015) CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 281:243–251

    CAS  Google Scholar 

  54. Lu X, Gu L, Wang J et al (2017) Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv Mater 29:1604437

    Google Scholar 

  55. Kim TW, Woo MA, Regis M, Choi KS (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5(13):2370–2374

    CAS  PubMed  Google Scholar 

  56. Gong Y, Pan H, Xu Z et al (2018) ACo2O4 (A=Ni, Zn, Mn) nanostructure arrays grown on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int J Hydrog Energy 43:14360–14368

    CAS  Google Scholar 

  57. Yu X, Sun Z, Yan Z et al (2014) Direct growth of porous crystalline NiCo2O4 nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. J Mater Chem A 2:20823–20831

    CAS  Google Scholar 

  58. Xiao C, Li Y, Lu X et al (2016) Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv Funct Mater 26:3515–3523

    CAS  Google Scholar 

  59. Zheng Z, Geng W, Wang Y et al (2017) NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction. Int J Hydrog Energy 42:119–124

    CAS  Google Scholar 

  60. He J, Sun Y, Wang M et al (2018) Direct growth of NiCo2O4 nanostructure on conductive substrate by electrospray technique for oxygen evolution reaction. J Alloys Compd 752:389–394

    CAS  Google Scholar 

  61. Umeshbabu E, Ranga Rao G (2016) NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electrochim Acta 213:717–729

    CAS  Google Scholar 

  62. Liu X, Liu J, Li Y et al (2014) Au/NiCo2O4 arrays with high activity for water oxidation. ChemCatChem 6:2501–2506

    Google Scholar 

  63. Wang J, Qiu T, Chen X et al (2014) Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium. J Power Sources 268:341–348

    CAS  Google Scholar 

  64. Lu B, Cao D, Wang P et al (2011) Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. Int J Hydrog Energy 36:72–78

    CAS  Google Scholar 

  65. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv 1:588–595

    CAS  Google Scholar 

  66. Song Y, Zhao M, Li H et al (2018) Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone. Sensors Actuators B Chem 255:1927–1936

    CAS  Google Scholar 

  67. Trasatti S (1980) Electrodes of conductive metallic oxides, Part 1. Elsevier Scientific Pub. Co.

  68. Abidat I, Bouchenafa-Saib N, Habrioux A et al (2015) Electrochemically induced surface modifications of mesoporous spinels (Co3O4-δ, MnCo2O4-δ, NiCo2O4-δ) as the origin of the OER activity and stability in alkaline medium. J Mater Chem A 3:17433–17444

    CAS  Google Scholar 

  69. Yeo B, Bell A (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593

    CAS  PubMed  Google Scholar 

  70. Menezes P, Chakadola P, Garai S et al (2018) Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting. Angew Chem Int Ed 57:15237–15242

    CAS  Google Scholar 

  71. Yan J, Fan Z, Sun W et al (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    CAS  Google Scholar 

  72. Zhang J, Lin Z, Lan Y et al (2006) A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. J Am Chem Soc 128:12981–12987

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CHED-Newton Agham Institutional Links under the project entitled “Affordable Electrolyzer Technology based on Transition Metal Catalysts for Energy Storage Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Donnabelle L. Balela.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, C.L.I., Balela, M.D.L. Electrocatalytic oxygen evolution reaction of hierarchical micro/nanostructured mixed transition cobalt oxide in alkaline medium. J Solid State Electrochem 24, 891–904 (2020). https://doi.org/10.1007/s10008-020-04530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04530-4

Keywords

Navigation