Skip to main content
Log in

Inertial-Viscosity-Type Algorithms for Solving Generalized Equilibrium and Fixed Point Problems in Hilbert Spaces

  • Original Article
  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new algorithm of inertial form for solving Split Generalized Equilibrium Problem (SGEP) and Fixed Point Problem (FPP) of multivalued nonexpansive mappings in real Hilbert spaces. Motivated by the viscosity-type method, we incorporate the inertial technique to accelerate the convergence of the proposed method. Here, the viscosity term is a function of the inertial extrapolation sequence and some assumptions on the bifunctions are dispensed with. Under standard and mild assumption of monotonicity and upper hemicontinuity of the SGEP associated mappings, we establish the strong convergence of the scheme which also solves a Variational Inequality Problem (VIP). A numerical example is presented to illustrate the effectiveness and performance of our method as well as comparing it with a related method and conventional inertial-viscosity-type algorithm in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020)

  2. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces. Nonlinear Stud. 27, 213–236 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Ceng, L.-C., Yao, J.-C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 214, 186–201 (2008)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algor. 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cheng, Q.: Parallel hybrid viscosity method for fixed point problems, variational inequality problems and split generalized equilibrium problems. J. Inequal. Appl. 2019, 169 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cholamjiak, W., Suantai, S.: A hybrid method for a countable family of multivalued maps, equilibrium problems, and variational inequality problems. Discrete Dyn. Nat. Soc. 2010, 349158 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cianciaruso, F., Marino, G., Muglia, L., Yao, Y.: A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. Fixed Point Theory Appl. 2010, 383740 (2010)

    Article  MathSciNet  Google Scholar 

  9. Combettes, P.I., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Flåm, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 78, 29–41 (1997)

    Article  MathSciNet  Google Scholar 

  11. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  12. Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  Google Scholar 

  13. Hendrickx, J.M., Olshevsky, A.: Matrix p-norms are NP-hard to approximate if \(P\neq 1, 2, \infty \). SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MathSciNet  Google Scholar 

  14. Izuchukwu, C., Aremu, K.O., Mebawondu, A.A., Mewomo, O.T.: A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol. 20, 193–210 (2019)

    Article  MathSciNet  Google Scholar 

  15. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems. Rend. Circ. Mat. Palermo Ser. 2 69, 711–735 (2020)

    Article  MathSciNet  Google Scholar 

  16. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space. Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020)

  17. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize. Demonstr. Math. 52, 183–203 (2019)

    Article  MathSciNet  Google Scholar 

  18. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math. 39, 38 (2020)

    Article  MathSciNet  Google Scholar 

  19. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods. J. Optim. Theory Appl. 185, 744–766 (2020)

    Article  MathSciNet  Google Scholar 

  20. Kazmi, K.R., Rizvi, S.H.: Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup. Math. Sci. 7, 1 (2013)

    Article  MathSciNet  Google Scholar 

  21. Luo, Y., Shang, M., Tan, B.: A general inertial viscosity type method for nonexpansive mappings and its applications in signal processing. Mathematics 8, 288 (2020)

    Article  Google Scholar 

  22. Majee, P., Nahak, C.: A hybrid viscosity iterative method with averaged mappings for split equilibrium problems and fixed point problems. Numer. Algor. 74, 609–635 (2017)

    Article  MathSciNet  Google Scholar 

  23. Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  24. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  Google Scholar 

  25. Oyewole, O.K., Abass, H.A., Mewomo, O.T.: A Strong convergence algorithm for a fixed point constrained split null point problem. Rend. Circ. Mat. Palermo Ser. 2. https://doi.org/10.1007/s12215-020-00505-6 (2020)

  26. Oyewole, O.K., Jolaoso, L.O., Izuchukwu, C., Mewomo, O.T.: On approximation of common solution of finite family of mixed equilibrium problems involving μα relaxed monotone mapping in Banach space. Politeh. Univ. Bucharest Sci. Bull. Ser. A 81, 19–34 (2019)

    MathSciNet  Google Scholar 

  27. Phuengrattana, W., Lerkchaiyaphum, K.: On solving the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings. Fixed Point Theory Appl. 2018, 6 (2018)

    Article  MathSciNet  Google Scholar 

  28. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  29. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. In: Reich, S., Zaslavski, A.J. (eds.) Optimization Theory and Related Topics. Contemporary Mathematics, vol. 568, pp. 225–240. American Mathematical Society, Providence, RI (2012)

  30. Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algor. https://doi.org/10.1007/s11075-020-00937-2 (2020)

  31. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38, 77 (2019)

    Article  MathSciNet  Google Scholar 

  32. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. Bull. Malays. Math. Sci. Soc. 43, 1893–1918 (2020)

    Article  MathSciNet  Google Scholar 

  33. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces. Ric. Mat. 69, 235–259 (2020)

    Article  MathSciNet  Google Scholar 

  34. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020092 (2020)

  35. Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008)

    Article  MathSciNet  Google Scholar 

  36. Tian, M., Liu, L.: Iterative algorithms based on the viscosity approximation method for equilibrium and constrained convex minimization problem. Fixed Point Theory Appl. 2012, 201 (2012)

    Article  MathSciNet  Google Scholar 

  37. Xu, H.-K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  Google Scholar 

  38. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Studies in Computational Mathematics, vol. 8, pp. 473–504. Elsevier, Amsterdam (2001)

Download references

Acknowledgements

The first author acknowledges with thanks the International Mathematical Union Breakout Graduate Fellowship (IMU-BGF) Award for his doctoral study. The second author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the IMU and NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatosin Temitope Mewomo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taiwo, A., Mewomo, O.T. Inertial-Viscosity-Type Algorithms for Solving Generalized Equilibrium and Fixed Point Problems in Hilbert Spaces. Vietnam J. Math. 50, 125–149 (2022). https://doi.org/10.1007/s10013-021-00485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-021-00485-9

Keywords

Mathematics Subject Classification (2010)

Navigation