Skip to main content
Log in

Links between Terrestrial Primary Production and Bacterial Production and Respiration in Lakes in a Climate Gradient in Subarctic Sweden

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Åberg J, Jansson M, Karlsson J, Nääs K-J, Jonsson A. 2007. Pelagic and benthic net production of dissolved inorganic carbon in an unproductive subarctic lake. Freshwater Biol 52:549–60.

    Article  CAS  Google Scholar 

  • Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2004. Role of lakes for organic carbon cycling in the boreal zone. Global Change Biol. 10:141–7.

    Article  Google Scholar 

  • Anttila P, Paatero P, Tapper U, Jarvinen O. 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmos Environ 29:1705–18.

    Article  CAS  Google Scholar 

  • Apple JK, del Giorgio PA, Kemp WM. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol 43:243–54.

    Article  Google Scholar 

  • Blomqvist P, Jansson M, Drakare S, Bergström AK, Brydsten L. 2001. Effects of additions of DOC on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microb Ecol 42:383–94.

    Article  PubMed  CAS  Google Scholar 

  • Brandt M, Jutman T, Alexandersson H. 1994. Sveriges vattenbalans. Årsmedelvärden 1961–1990 av nederbörd, avdunstning och avrinning. SMHI Hydrology Nr 49, p 16.

  • Carlsson BÅ, Karlsson PÅ, Svensson BM. 1999. Alpine and subalpine vegetation. In: Rydin H, Snoeijs P, Diekmann M, Eds. Swedish plant geography. Acta Phytogeographica Suecica. pp 75–89.

  • Cattle H, Crossley J. 1995. Modeling Arctic Climate-Change. Philos Trans Roy Soc London Ser-A 352:201–13.

    Article  Google Scholar 

  • Cole JJ, Caraco NF. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–56.

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik L, Striegl RG, Duarte CM, Kortelainen P, Downing JJ, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.

    Article  CAS  Google Scholar 

  • de March L. 1978. Permanent sedimentation of nitrogen, phosphorus, and organic carbon in a high Arctic lake. J Fish Res Board Can 35:1089–94.

    Google Scholar 

  • del Giorgio PA, Cole JJ, Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–51.

    Article  Google Scholar 

  • del Giorgio PA, Peters RH. 1994. Patterns in planktonic P-R ratios in lakes – influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–87.

    Article  Google Scholar 

  • Duarte CM, Prairie YT. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–70.

    Article  CAS  Google Scholar 

  • Eriksson G, Persson G. 1967. Limnological studies in high mountain lakes in the Latnajaure area 1967. Institute of Limnology, University of Uppsala.

  • Gerten D, Schabhoff S, Haberlandt U, Lucht W, Sitch S. 2004. Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–70.

    Article  CAS  Google Scholar 

  • Hessen DO. 1998. Food webs and carbon cycling in humic lakes. Tranvik LJ, Hessen DO, Eds. Aquatic humic substances: ecology and biochemistry. Berlin: Springer-Verlag. pp 285–315.

    Google Scholar 

  • Hickler T, Smith B, Sykes MT, Davis M, Sugita S, Walker K. 2004. Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–30.

    Article  Google Scholar 

  • Hope D, Billett MF, Cresser MS. 1994. A review of the export of carbon in river water – fluxes and processes. Environ Pollut 84:301–24.

    Article  PubMed  CAS  Google Scholar 

  • Jansson M, Karlsson J, Blomqvist P. 2003. Allochthonous organic carbon decreases pelagic energy mobilization in lakes. Limnol Oceanogr 48:1711–6.

    Article  CAS  Google Scholar 

  • Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ. 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol Evol 22:316–22.

    Article  PubMed  Google Scholar 

  • Jarvis PG, Saugier B, Schulze E-D. 2001. Productivity of boreal forests. Roy J, Saugier B, Mooney HA, Eds. Terrestrial global productivity. San Diego: Academic Press. pp 211–44.

    Chapter  Google Scholar 

  • Jones RI. 2005. Limnology of humic waters. Ver Int Verein Theor Angewan Limnol 29:51–60.

    CAS  Google Scholar 

  • Jonsson A, Algesten G, Bergstrom AK, Bishop K, Sobek S, Tranvik LJ, Jansson M. 2007. Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 224:141–50.

    Article  Google Scholar 

  • Jonsson A, Karlsson J, Jansson M. 2003. Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6:224–35.

    Article  CAS  Google Scholar 

  • Karlsson J. 2007. Different carbon support for community respiration and secondary production in unproductive lakes. Oikos 116:1691–6.

    Article  CAS  Google Scholar 

  • Karlsson J, Jansson M, Jonsson A. 2002. Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes. Ecology 83:2902–10.

    Article  Google Scholar 

  • Karlsson J, Jansson M, Jonsson A. 2007. Respiration of allochthonous organic carbon in unproductive forest lakes determined by the Keeling plot method. Limnol Oceanogr 52:603–8.

    Article  CAS  Google Scholar 

  • Karlsson J, Jonsson A, Jansson M. 2001. Bacterioplankton production in lakes along an altitude gradient in the subarctic north of Sweden. Microb Ecol 42:372–82.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Jonsson A, Jansson M. 2005. Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Global Change Biol 11:710–5.

    Article  Google Scholar 

  • Karlsson J, Jonsson A, Meili M, Jansson M. 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–76.

    Article  Google Scholar 

  • Koca D, Smith B, Sykes MT. 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Climatic Change 78:381–406.

    Article  CAS  Google Scholar 

  • Kortelainen P, Mattsson T, Finer L, Ahtiainen M, Saukkonen S, Sallantaus T. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–68.

    Article  CAS  Google Scholar 

  • Kortelainen P, Saukkonen S, Mattsson T. 1997. Leaching of nitrogen from forested catchments in Finland. Global Biogeochem Cycle 11:627–38.

    Article  CAS  Google Scholar 

  • Laaksonen K. 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann Acad Sci Fenn (Ser A III) 119:5–19.

    Google Scholar 

  • Laudon H, Köhler S, Buffam I. 2004. Seasonal TOC export from seven boreal catchments in northern Sweden. Aquat Sci 66:223–30.

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B. 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–9.

    Article  PubMed  CAS  Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenaum T, Schloss A, Tian H, Williams LJ, Wittenberg U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cycle 15:183–206.

    Article  CAS  Google Scholar 

  • Mitchell TD, Jones PD. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712.

    Article  Google Scholar 

  • Morales-Baquero R, Pulido-Villena E, Romera O, Ortega-Retuerta E, Conde-Porcuna JM, Pérez-Martinez C, Reche I. 2006. Significance of atmospheric deposition to freshwater ecosystems in the southern Iberian Peninsula. Limnetica 25:171–80.

    Google Scholar 

  • Pajunen H. 2000. Lake sediments: their carbon store and related accumulation rates. In: Pajunen, H, Ed. Carbon in Finnish lake sediments, geological survey of Finland, Special Paper 29. Kuopio, Finland. pp 36–69.

  • Prentice IC, Sykes MT, Cramer W. 1993. A simulation model for the transient effects of climate change on forest landscapes. Ecol Model 65:51–70.

    Article  Google Scholar 

  • Rivkin RB, Legendre L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398–400.

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW, Schmidt RV, Reid RA. 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J Fish Res Board Can 29:1627–31.

    CAS  Google Scholar 

  • Shaver G, Jonasson S. 2001. Productivity of arctic ecosystems. In: Roy J, Saugier B, Mooney HA, Eds. Terrestrial global productivity. San Diego: Acadamic Press. pp 189–210.

    Chapter  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes M, Thonicke K, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biol 9:161–85.

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol Biogeogr 10:621–37.

    Google Scholar 

  • Smith DC, Azam F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Web 6:107–14.

    Google Scholar 

  • Sykes MT, Prentice IC, Cramer W. 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–33.

    Google Scholar 

  • Thurman EM. 1985. Organic geochemistry of natural waters. Martin Nijhoff/Dr W Junk Publishers. 497 pp.

  • Tranvik LJ. 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of different humic content. Microb Ecol 16:311–22.

    Article  CAS  Google Scholar 

  • Wetzel RG. 2001. Limnology: lake and river ecosystems. San Diego: Academic Press. 1006 pp.

    Google Scholar 

  • Zaehle S, Smith B, Hatterman F. 2005. Effects of parameter uncertainties on the modelling of terrestrial biosphere dynamics. Global Biogeochem Cycle 19:GB3020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ludmilla Janeck and Thomas Westin for their assistance during field work. Financial support was given by the Climate Impacts Research Centre, Umeå University and ALARM (funding from the EU Framework Programme 6 Contract number: GOCE-CT-2003-506675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Jansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, M., Hickler, T., Jonsson, A. et al. Links between Terrestrial Primary Production and Bacterial Production and Respiration in Lakes in a Climate Gradient in Subarctic Sweden. Ecosystems 11, 367–376 (2008). https://doi.org/10.1007/s10021-008-9127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9127-2

Keywords

Navigation