Skip to main content
Log in

Fundamental study of thermal conduction in dry soils

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The thermal conductivity of the different soil components—mineral, liquids and air—varies across two orders of magnitude. Two studies are implemented to explore the role of contacts in heat conduction in dry granular materials. The first set of experiments is designed to elucidate heat transfer at contacts, and it is complemented with a numerically based inversion analysis for different local and boundary conditions to extract proper material parameters. Then, the thermal conductivity of dry soils is measured at different packing densities to address the relevance of coordination number and particle shape effects. Together, both studies confirm the prevailing effect of contact quality and number of contacts per unite volume on heat conduction in granular materials. Interparticle contacts and the presence of liquids in pores play a critical role in heat transfer, and determine the ordered sequence of typical thermal conductivity values: k air < k dry-soil < k water < k saturated-soil < k mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

λ:

heat loss coefficient (s−1)

ρ:

mass density (g m−3)

ν:

poisson ratio

A :

area (m2)

a :

fitting parameter

A c :

contact area (m2)

cn :

interparticle coordination number

C u :

coefficient of uniformity

c v :

heat capacity (cal g−1 °C−1)

d:

diameter (mm)

D:

thermal diffusivity (m2 s−1)

D 50 :

mean particle size (mm)

FRd :

larger particle size ratio

FRmass :

mass fraction

G:

shear stiffness

I :

electrical current (Ampere)

k :

thermal conductivity (W m−1 K−1)

k eff :

effective thermal conductivity (W m−1 K−1)

L :

loss factor (cal s−1°C−1)

M:

numerical modulus

N:

normal force

n :

porosity

p :

fitting parameter

q :

heat energy per unit time (cal s−1)

R:

resistance (Ω)

S:

saturation

T:

temperature (°C)

t :

time (min)

V :

voltage (V)

References

  1. Stein C.A. and Stein S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359(6391): 123

    Article  ADS  Google Scholar 

  2. Verhoogen J. (1980). Energetics of the earth, p. 139. National Academy of Sciences, Washington, DC

    Google Scholar 

  3. Miller, D.L.: Thermal design considerations in frozen ground engineering: a State of the Practice Report in Temperature Monitoring/Ground Thermometry, Prepared by the Technical Council on Cold Region Engineering of the American Society of Civil Engineers. Krzewinski, T.G., Tart, R.G. (eds.) pp. 53–71, ASCE: New York (1985)

  4. Joshi R.C., Achari G., Horsfield D. and Nagaraj T.S. (1994). Effect of heat transfer on strength of clay. J. Geotech. Eng. 120(6): 1080–1088

    Article  Google Scholar 

  5. Carslaw H.S. and Jaeger J.C. (1959). Conduction of Heat in Solids, p. 510. Clarendon Press, Oxford

    Google Scholar 

  6. Singh D.N. and Devid K. (1992). Generalized relationships for estimating soil thermal resistivity. Exp. Thermal Fluid Sci. 22: 133–143

    Article  Google Scholar 

  7. Vargas W.L. and McCarthy J.J. (2001). Heat conduction in granular materials. AIChE J. 47(5): 1052–1059

    Article  Google Scholar 

  8. Thalmann R.E. (1950). Thermal Conductivity of Dry Soils. University of Kansas, Lawrence, KS

    Google Scholar 

  9. Lambert M.A. and Fletcher L.S. (1997). Review of models for thermal contact conductance of metals. J. Thermophys. Heat Transf. 11(2): 129–140

    Google Scholar 

  10. Tang, A.-H., Cui, Y.-J., Le, T.-T.: Thermal properties of compacted bentonites. Can. Geotech. J. (2006) (in press)

  11. Weidenfeld G., Weiss Y. and Kalman H. (2000). A theoretical model for effective thermal conductivity (ETC) of particulate beds under compression. Granular Matter. 6: 121–129

    Article  Google Scholar 

  12. Yun T.S. (2005). Mechanical and thermal study of hydrate bearing sediments, in School of Civil and Environmental Engineering, p. 179. Georgia Institute of Technology, Atlanta

    Google Scholar 

  13. Manohar K., Yarbrough D.W. and Booth J.R. (2000). Measurement of apparent thermal conductivity by the thermal probe method. J. Test. Eval. 28(5): 345–351

    Article  Google Scholar 

  14. Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure (ASTM D 5334–00)

  15. Cho G.C., Dodds J. and Santamarina J.C. (2006). Particle shape effects on packing density, stiffness and strength—natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5): 591–602

    Article  Google Scholar 

  16. Guyon E., Oger L. and Plona T.J. (1987). Transport properties in sintered porous media composed of two particle size. J. Appl. Phys. D: Appl. Phys. 20: 1637–1644

    Article  ADS  Google Scholar 

  17. Santamarina J.C., Klein K.A., (2001) Fam M. Soils and Waves—Particulate Materials Behavior, Characterization and Process Monitoring, p. 488. Wiley, New York

  18. Fletcher L.S. (1988). Recent developments in contact conductance heat transfer. J. Heat Transf. 110: 1059–1070

    Article  Google Scholar 

  19. Tarnawski V.R., Leong W.H., Gori F., Buchan G.D. and Sundberg J. (2002). Inter-particle contact heat transfer in soil systems at moderate temperatures. Int. J. Energy Res. 26: 1345–1358

    Article  Google Scholar 

  20. Yagi S. and Kunii D. (1957). Studies on effective thermal conductivity in Packed Bed. AIChE J. 3(3): 373–381

    Article  Google Scholar 

  21. Aduda B.O. (1996). Effective thermal conductivity of loose particulate systems. J. Mater. Sci. 31: 6441–6448

    Article  ADS  Google Scholar 

  22. Williams J.A. (1994). Engineering tribology. Oxford Science Publ., Oxford, 488

    Google Scholar 

  23. Cote J. and Konrad J.M. (2005). Thermal conductivity of base course material. Can. Geotech. J. 42: 61–78

    Article  Google Scholar 

  24. Woodside W. and Messmer J.H. (1961). Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 32(9): 1688–1698

    Article  ADS  Google Scholar 

  25. Ye J., Kojima N., Furuya K., Munakata F. and Okada A. (2002). Micro-thermal analysis of thermal conductance distribution in advanced silicon nitrides. J. Therm. Anal. Calorim. 69: 1031–1036

    Article  Google Scholar 

  26. Gangadhara Rao, M.V.B.B., N., S.D.: A generalized Relationship to estimate thermal resistivity of soils. Can. Geotech. J. 36, 767–773 (1999)

  27. Marotta E.E. and Fletcher L.S. (1998). Thermal contact conductance for Alumimum and Stainless steel contacts. J. Thermophys. Heat Transf. 12(3): 374–381

    Google Scholar 

  28. Mirmira S.R., Jackson M.C. and Fletcher L.S. (2001). Effective thermal conductivity and thermal contact conductance of graphite fiber composites. J. Thermophys. Heat Transf. 15(1): 18–26

    Article  Google Scholar 

  29. Kumar S.S., Abilash P.M. and Ramanurthi K. (2004). Thermal contact conductance for cylindrical and spherical contacts. Heat Mass Transf. 40: 678–688

    Article  Google Scholar 

  30. Sridhar M.R. and Yovanovich M.M. (1996). Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. J. Heat Transf. 118(1): 3–9

    Google Scholar 

  31. Farouki O.T. (1985) Thermal design considerations in Frozen Ground Engineering. In: Krzewinski T.G., Rupert G., Tart J. (eds). ASCE, New York p. 277

  32. Hadley G.R. (1986). Thermal conductivity of packed metal powders. Int. J. Heat Mass Transf. 29(6): 909–920

    Article  Google Scholar 

  33. Becker B.R., Misra A. and Fricke B.A. (1992). Development of correlations for soil thermal conductivity. Int. Commun. Heat Mass Transf. 19: 59–68

    Article  Google Scholar 

  34. Gavriliev, R.I.: Thermal properties of soils and surface covers. In: Reston, D.C. (ed.) Thermal analysis, construction, and monitoring methods for frozen ground, vol. 492, pp. 277–294, ASCE, VA (2004)

  35. Andersland, O.B., Ladanyi, B.: Frozen Ground Engineering. 2 ed. Hoboken, p. 363. Wiley, NJ, ASCE (2004)

  36. DeVera A.L. and Strieder W. (1977). Upper and lower bounds on the thermal conductivity of a random, two-phase material. J. Phys. Chem. 81(18): 1783–1790

    Article  Google Scholar 

  37. Sass J.H., Lachenbruch A.H. and Munroe R.J. (1971). Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determination. J. Geophys. Res. 76(14): 3391–3401

    Article  ADS  Google Scholar 

  38. Hashin Z. and Shtrikman S. (1962). A variational approach to the theory of the effective magnetic permeability of multi-phase materials. J. Appl. Phys. D: Appl. Phys. 33(10): 3125–3131

    MATH  ADS  Google Scholar 

  39. Hill R. (1965). A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4): 213–222

    Article  ADS  Google Scholar 

  40. Gori F. and Corasaniti S. (2004). Theoretical prediction of the thermal conductivity and temperature variation inside Mars soil analogues. Planet. Space Sci. 52: 91–99

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Santamarina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, T.S., Santamarina, J.C. Fundamental study of thermal conduction in dry soils. Granular Matter 10, 197–207 (2008). https://doi.org/10.1007/s10035-007-0051-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0051-5

Keywords

Navigation