Skip to main content
Log in

Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalanches

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The effective friction coefficient of rock avalanches diminishes gradually as a function of the avalanche volume. Large rock avalanches can reach run-out distances as long as ten times the fall height, despite the fact that the physics of friction would indicate a run-out only a little greater than the fall height. Numerous suggestions have been put forward to explain this remarkable departure from the predictions of both small-scale experiments and basic theory. It is shown here that accounting for rock fragmentation within the avalanche in combination with the presence of water, leads to results in line with the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voight, B., Pariseau, G.W.G.: In: Voight, B. (ed.) Rockslides and Avalanches. Elsevier, Amsterdam (1978)

  2. Davies T.R.H., McSaveney M.J.: Runout of dry granular avalanches. Can. Geotech. J. 36, 313–320 (1999)

    Article  Google Scholar 

  3. Middleton W.: Mechanics in the Earth and Environmental Sciences, pp. 459. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  4. Scheidegger A.E.: On the prediction of the release and velocity of catastrophic rockfalls. Rock Mech. 5(4), 231–236 (1973)

    Article  Google Scholar 

  5. Lucchitta B.K.: Landslides in Vallis Marineris, Mars. J. Geophys. Res. 84, 8097–8113 (1979)

    Article  ADS  Google Scholar 

  6. McEwen A.S.: Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology 17, 1111–1114 (1989)

    Article  ADS  Google Scholar 

  7. Erismann T.H.: Mechanisms of large landslides. Rock Mech. Rock Eng. 12, 5–46 (1979)

    Google Scholar 

  8. Goguel J.: Scale-dependent rockslide mechanisms, with emphasis on the role of pore fluid vaporization. In: Voight, B. (eds) Rockslides and Avalanches, pp. 693–706. Elsevier, Amsterdam (1978)

    Google Scholar 

  9. Habib P.: Production of gaseous pore pressure during rock slides. Rock Mech. Rock Eng. 7, 193–197 (1975)

    Google Scholar 

  10. Kent P.E.: The transport mechanism in catastrophic rock falls. J. Geol. 74, 79–83 (1966)

    Article  ADS  Google Scholar 

  11. Melosh H.J.: Acoustic fluidization: a new geological process?. J. Geophys. Res. 84, 7513–7520 (1979)

    ADS  Google Scholar 

  12. Hsu K.J.: Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86, 129–140 (1975)

    Article  Google Scholar 

  13. Shreve R.L.: The Blackhawk landslide. Geol. Soc. Amer. Spec. Paper 198, 47 (1968)

    Google Scholar 

  14. De Blasio, F.V., Elverhøi, A.: A model for frictional melt production beneath large rock avalanches. J. Geophys. Res (2008, in press)

  15. Davies T.R.H.: Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. Rock Eng. 15, 9–24 (1982)

    Google Scholar 

  16. Hsü K.J.: Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86(1), 129–140 (1975)

    Article  Google Scholar 

  17. Straub, S.: Bagnold revisited; implications for the rapid motion of high concentration sediment flows. In: McCaffrey, W.D., Kneller, B.C. (eds.) Particulate Gravity Currents, pp. 91–109. International Association of Sedimentologists Special Publication, 31 (2001)

  18. Campbell C.S., Cleary P.W., Hopkins M.: Large scale landslide simulations: global deformations, velocities and basal friction. J. Geoph. Res. 100, 8267–8283 (1995)

    Article  ADS  Google Scholar 

  19. De Blasio F.V.: Production of frictional heat and hot vapour in a model of self-lubricating landslides. Rock Mech. Rock Eng. 41, 219–226 (2008)

    Article  ADS  Google Scholar 

  20. Davies T.R., McSaveney M.J., Hogdson K.A.: A fragmentation-spreading model for long-runout rock avalanches. Can. Geotechn. J. 36, 1096–1110 (1999)

    Article  Google Scholar 

  21. Legros F.: The mobility of long-runout landslides. Eng. Geol. 63, 301–331 (2002)

    Article  Google Scholar 

  22. Legros, F.: In: Evans, S.G., Scarascia Mugnozza, G., Strom, A., Hermanns, R.L. (eds.) Landslides from Massive Rock Slope Failure. NATO science series, Springer, Berlin (2006)

  23. Furstenau D.W., Gutsche O., Kapur P.C.: Int. J. Min. Process. 44, 521 (1996)

    Article  Google Scholar 

  24. Rhodes M.: Introduction to Particle Technology. Wiley, New York (1998)

    Google Scholar 

  25. Crosta, G.B., Frattini, P., Fusi, N.: Fragmentation in the Val Pola rock avalanche, Italian Alps. JGR 112 (2007). doi:10.1029/2005JF000455

  26. Crosta G.B., Frattini P., Fusi N., Sosio R.: Granulometria, segregazione e frammentazione negli accumuli di valanghe di roccia. Giornale di Geologia Applicata 4, 31–40 (2006)

    Google Scholar 

  27. Locat P., Couture R., Leroueil S., Locat J., Jaboyedoff M: Fragmentation energy in rock avalanches. Can. Geotech. J. 43, 830–851 (2006)

    Article  Google Scholar 

  28. Coussot, P.C.: Mudflow rheology and dynamics: IAHR-AIRH monographs, AA Balkema Publishers, Rotterdam, 272 p (1996)

  29. Ancey C.: Plasticity and geophysical flows: a review. J. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  30. Stickel J., Powell R.L.: Fluid mechanics and rheology of dense suspensions. Ann. Rev. Fluid Mech. 37, 129–149 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ovarlez, G., Bertrand, F., Rodts, S.: Local determination of the constitutive law of a dense suspension of non-colloidal particles through MRI. cond-mat/0509336 (2005)

  32. Mahaut F., Chateau X., Coussot P., Ovarlez G. Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52(1): 287–313. doi:10.1122/1.2798234

  33. Trunk F.J., Dent J.D., Lang T.E.: Computer modelling of large rock slides. J. Geotech. Eng. 112(3), 348–360 (1986)

    Article  Google Scholar 

  34. Forterre Y., Pouliquen O.: Flows in dense granular media. Ann. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. De Blasio F.V., Elverhøi A., Issler D., Harbitz C.B., Bryn P., Lien R.: On the dynamics of subaqueous clay rich gravity mass flows—the giant Storegga slide, Norway. Mar. Petrol. Geol. 22, 179–186 (2005)

    Article  Google Scholar 

  36. Johnson A.M.: Physical Processes in Geology, pp. 577. Freeman, San Francisco (1970)

    Google Scholar 

  37. Imran J., Harff P, Parker G.: A numerical model of submarine debris flows with graphical user interface. Comp. Geosci. 27(6), 721–733 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Vittorio De Blasio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Blasio, F.V. Rheology of a wet, fragmenting granular flow and the riddle of the anomalous friction of large rock avalanches. Granular Matter 11, 179–184 (2009). https://doi.org/10.1007/s10035-009-0134-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0134-6

Keywords

Navigation