Skip to main content
Log in

Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Sand densification around the pile has traditionally been regarded as an explanation for the grain migration and soil subsidence that often occur around cyclic laterally loaded piles embedded in sand. Supported by new empirical evidence, this paper proposes that, additionally to some soil densification around the pile, the main cause for the continuous “steady-state” grain migration is a convective cell flow of sand grains in the vicinities of the pile head. Such convective flow would be caused by a ratcheting mechanism triggered by the cyclic low-frequency lateral displacements of the pile. Furthermore, the experimental results suggest that the limit between the convective cell and the static soil is marked by a distinct direct shear surface. This might shed some light into the complex phenomena related to the pile-soil interaction in the upper layers of the bedding, which are normally the main contributor for the lateral load-bearing capacity of piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne B.W., Houlsby G.T.: Foundations for offshore wind turbines. Philos. Trans. Royal Soc. A 361(1813), 2909–2930 (2003)

    Article  ADS  Google Scholar 

  2. Lesny K.: Gründung von Offshore-Windenergieanlagen—Entscheidungshilfen für Entwurf und Bemessung. Bautechnik 85(8), 503–511 (2008)

    Article  Google Scholar 

  3. Achmus M., Abdel-Rahman K., Kuo Y.-S.: Design of monopile foundations for offshore wind energy converters. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 463–470. Gdansk, Poland (2008)

  4. API.: RP-2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms—working stress design, (x) 21st edn, Dec. 2000; Errata&Supplement 1, Dec. 2002; Errata&Supplement 2, Sept. 2005; Errata&Supplement 3, Dec. 2007), American Petroleum Institute (2007)

  5. Germanischer Lloyd: Guideline for the certification of offshore wind turbines. Germanischer Lloyd Windenergie GmbH (2005)

  6. ISO.: ISO 19902:2007: Petroleum and natural gas industries—Fixed steel offshore structures. ISO, international organization for standardization (2007)

  7. ISET.: RAVE-Research at alpha ventus. The research initiative at the first German offshore wind farm. ISET, Institut für Solare Energieversorgunstechnik, Kassel (2008)

  8. Grabe, J.: Pile foundations for nearshore and offshore structures. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 445–462. Gdansk, Poland (2008)

  9. Savidis S., Rackwitz F., Tasan H.E.: 1g-Modellversuche mit zyklisch horizontal belasteten Einzelpfählen im wassergesättigten Sand. In: Stahlmann, J. (eds) Pfahl-Symposium 2007, pp. 115–130. Braunschweig, Germany (2007)

    Google Scholar 

  10. Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Predictions of long-term deformations for monopile foundations of offshore wind power plants. Geotechnics in Maritime Engineering. 11th Baltic Sea geotechnical conference, pp. 785-792. Gdansk, Poland (2008)

  11. Stahlmann, J., Kluge, K., Gattermann, J.: Theoretische und experimentelle Erkenntnisse zur Bodenverflüssigung bei Offshore-Windenergieanlagen. HTG-Kongress 2005 in Bremen, Germany, Hafenbautechnische Gesellschaft e.V., pp. 265–274 (2005)

  12. Cheang, L., Matlock, H.: Static and cyclic lateral load tests on instrumented piles in sand. The Earth Technology Corporation, Long Beach, California (1983)

  13. Brown D.A., Morrison C., Reese L.C.: Lateral load behavior of pile group in sand. J. Geotech. Eng. 114(11), 1261–1276 (1988)

    Article  Google Scholar 

  14. Savidis S., Rackwitz F., Richter T., Röhner J., Schneider N.: Verhalten von Pfählen in wassergesättigten Sanden unter zyklischen Horizontallasten. Bauingenieur 79, 383–385 (2004)

    Google Scholar 

  15. Grabe J., Dührkop J., Mahutka K.-P.: Monopilegründungen von Offshore-Windenergieanlagen. Zur Bildung von Porenwasserüberdrücken aus zyklischer Belastung. Bauingenieur 79, 418–423 (2004)

    Google Scholar 

  16. Achmus M., Kuo Y.-S., Abdel-Rahman K.: Behaviour of monopile foundations under cyclic lateral load. Comput. Geotech. 36, 725–735 (2009)

    Article  Google Scholar 

  17. Bentley K.J., El Naggar M.H.: Numerical analysis of kinematic response of single piles. Can. Geotech. J. 37, 1368–1382 (2000)

    Article  Google Scholar 

  18. Taiebat, H.A.: Three dimensional liquefaction analysis of offshore foundations. Ph.D Thesis, University of Sidney (1999)

  19. Bolton M.D.: The strength and dilatancy of sands. Géotechnique 36(1), 65–78 (1986)

    Article  Google Scholar 

  20. Gudehus, G.: Nichtlineare Bodendynamik in der Geotechnik. Baugrundtagung 2000, Hannover, VGE Verlag GmbH, Essen, pp. 263-270 (2000)

  21. Triantafyllidis T.: Bodenverflüssigung infolge zyklischer Belastung. GEOLEX 2(2), 5–20 (2003)

    Google Scholar 

  22. Randolph M.F.: Science and empiricism in pile foundation design. Géotechnique 53(10), 847–875 (2003)

    Google Scholar 

  23. White D.J., Bolton M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Géotechnique 54(6), 375–397 (2004)

    Article  Google Scholar 

  24. Lobo-Guerrero S., Vallejo L.E.: Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granul. Matter 9, 241–250 (2007)

    Article  Google Scholar 

  25. Lobo-Guerrero S., Vallejo L.E.: DEM analysis of crushing around driven piles in granular materials. Géotechnique 55(8), 617–623 (2005)

    Article  Google Scholar 

  26. Pöschel T., Saluena C., Schwager T.: Can we scale granular systems?. In: Kishino, Y. (eds) Powders & Grains’2001, pp. 439–442. Rotterdam, Balkema (2001)

    Google Scholar 

  27. Walz, B.: Der 1g-Modellversuch in der Bodenmechanik-Verfahren und Anwendung. Vortrag zum 2. Hans Lorenz Symposium, Grundbauinstitut der Technische Universität Berlin, pp. 13–26 (2006)

  28. Holzlöhner, U.: Modellversuchstechnik. Symposium Messtechnik im Erd- und Grundbau, Deutsche Gesellschaft für Erd- und Grundbau e.V., Essen, pp. 119–126 (1983)

  29. Altaee A., Fellenius B.H.: Physical modeling in sand. Can. Geotech. J. 31, 420–431 (1994)

    Article  Google Scholar 

  30. ASTM.: ASTM D 698:2007e1: Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International (2007)

  31. Achmus M., Abdel-Rahman K., Peralta P.: Untersuchungen zum Tragverhalten von Monopiles für die Gründung von Offshore-Windenergieanlagen. In: Stahlmann, J. (eds) Pfahl-Symposium, pp. 137–158. Braunschweig, Germany (2005)

    Google Scholar 

  32. Hettler, A.: Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe (1981)

  33. Bobryakov A.P., Kosykh V.P., Revuzhenko A.F.: Temporary structures during the deformation of granular media. (Translation from) Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, vol 2, pp. 29–39. Mining Institute, Siberian Branch, Academy of Sciences of the USSR (1990)

  34. Faraday M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. Royal Soc. London 121, 299–340 (1831)

    Article  Google Scholar 

  35. Kutzner, C.: Über die Vorgänge in körnigen Schüttungen bei der Rüttelverdichtung. PhD thesis, Technische Hochschule Karlsruhe (1962)

  36. Gallas J.A.C., Herrmann H.J., Sokolowski S.: Convection cells in vibrating granular media. Phys. Rev. Lett. 69(9), 1371–1374 (1992)

    Article  ADS  Google Scholar 

  37. Herrmann H.J.: Physics of granular media. Chaos, Solitons and Fractals, pp. 203-212. Elsevier Science (1995)

  38. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)

    Article  ADS  Google Scholar 

  39. Knight J.B., Ehrichs E.E., Kuperman V.Y., Flint J.K., Jaeger H.M., Nagel S.R.: Experimental study of granular convection. Phys. Rev. E 54(5), 5726–5738 (1996)

    Article  ADS  Google Scholar 

  40. Ehrichs E.E., Flint J.K., Jaeger H.M., Knight J.B., Nagel S.R., Karczmar G.S., Kuperman V.Y.: Convection in vertically vibrated granular materials. Philos. Trans. Royal Soc. A 356, 2561–2567 (1998)

    Article  ADS  Google Scholar 

  41. Festag, G.: Experimentelle und numerische Untersuchungen zum Verhalten von granularen Materialien unter zyklischer Beanspruchung. Technische Universität Darmstadt (2003)

  42. Gudehus, G.: Ratcheting und DIN 1054. 10. Darmstädter Geotechnik-Kolloquium, pp. 159–172 (2003)

  43. McNamara, S., García-Rojo, R., Herrmann, H.J.: Microscopic origin of granular ratcheting. Phys. Rev. E, 77 (2008)

  44. García-Rojo, R., McNamara, S., Herrmann, H.J.: Discrete element methods for the micro-mechnical investigation of granular ratcheting. Proceedings of the ECCOMAS (2004)

  45. Alonso-Marroquin, F., Herrmann, H.J.: Ratcheting of granular materials. Phys. Rev. Lett. 92(5) (2004)

  46. Alonso-Marroquin, F.: Micromechanical investigation of soil deformation: incremental response and granular ratcheting. Universität Stuttgart (2004)

  47. Alonso-Marroquin F., Mühlhaus H.B., Herrmann H.J.: Micromechanical investigation of soil plasticity using a discrete model of polygonal particles. Theor. Appl. Mech. 35, 11–28 (2008)

    Article  MATH  Google Scholar 

  48. Grabe J., Mahutka K.-P., Dührkop J.: Monopilegründungen von Offshore-Windenergieanlagen—Zum Ansatz der Bettung. Bautechnik 82(1), 1–10 (2005)

    Article  Google Scholar 

  49. Alizadeh M., Davisson M.T.: Lateral load tests on piles—Arkansas River project. J. Soil Mech. Found. Div. 96(5), 1583–1604 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Cuéllar.

Additional information

This article contains many references to the colour features of the presented test, which won’t be appreciable in the greyscale of the figures. The full colour version of all the figures can be viewed in the on-line version of the paper.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM (MOV 11,592 kb)

ESM (MOV 9,572 kb)

ESM (MOV 10,038 kb)

ESM (MOV 12,218 kb)

ESM (MOV 11,817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuéllar, P., Baeßler, M. & Rücker, W. Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads. Granular Matter 11, 379 (2009). https://doi.org/10.1007/s10035-009-0153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-009-0153-3

Keywords

Navigation