Skip to main content
Log in

Granular discharge and clogging for tilted hoppers

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a clogging phase diagram of flow state vs tilt angle and ratio of hole to grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nedderman R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, NY (1992)

    Book  Google Scholar 

  2. Muzzio F.J., Shinbrot T., Glasser B.J.: Powder technology in the pharmaceutical industry: The need to catch up fast. Powder Technol. 124, 1 (2002)

    Article  Google Scholar 

  3. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  4. Duran J.: Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, NY (2000)

    MATH  Google Scholar 

  5. Liu, A.J., Nagel, S.R. (eds): Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. Taylor and Francis, NY (2001)

    Google Scholar 

  6. Beverloo W.A., Leniger H.A., van de Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260 (1961)

    Article  Google Scholar 

  7. Nedderman R.M., Tuzun U., Savage S.B., Houlsby G.T.: The flow of granular materials-I: Discharge rates from hopper. Chem. Eng. Sci. 37, 1597 (1982)

    Article  Google Scholar 

  8. Mankoc C., Janda A., Arevalo R., Pastor J.M., Zuriguel I., Garcimartin A., Maza D.: The flow rate of granular materials through an orifice. Granul. Matter 9, 407 (2007)

    Article  Google Scholar 

  9. Manna S.S., Herrmann H.J.: Intermittent granular flow and clogging with internal avalanches. Eur. Phys. J. E 1, 341 (2000)

    Article  Google Scholar 

  10. Zuriguel I., Pugnaloni L.A., Garcimartin A., Maza D.: Jamming during the discharge of grains from a silo described as a percolating transition. Phys. Rev. E 68, 030301 (2003)

    Article  ADS  Google Scholar 

  11. Zuriguel I., Garcimartin A., Maza D., Pugnaloni L.A., Pastor J.M.: We present experimental results on the shape of arches that block the outlet of a two dimensional silo. Phys. Rev. E 71, 051303 (2005)

    Article  ADS  Google Scholar 

  12. Saraf S., Franklin S.V.: Jamming of rod-like granular materials in hoppers. Bull. Am. Phys. Soc. 45, J14.005 (2009)

    Google Scholar 

  13. Baxter G.W., Behringer R.P., Fagert T., Johnson G.A.: Pattern formation in flowing sand. Phys. Rev. Lett. 62, 2825 (1989)

    Article  ADS  Google Scholar 

  14. Raafat T., Hulin J.P., Herrmann H.J.: Density waves in dry granular media falling through a vertical pipe. Phys. Rev. E 53, 4345 (1996)

    Article  ADS  Google Scholar 

  15. Schick K., Verveen A.: 1/f noise with a low frequency white noise limit. Nature 251, 599 (1974)

    Article  ADS  Google Scholar 

  16. Wu X.l., Maloy K.J., Hansen A., Ammi M., Bideau D.: Why hour glasses tick. Phys. Rev. Lett. 71, 1363 (1993)

    Article  ADS  Google Scholar 

  17. Veje C.T., Dimon P.: Power spectra of flow in an hourglass. Phys. Rev. E 56, 4376 (1997)

    Article  ADS  Google Scholar 

  18. Evesque P., Meftah W.: Mean flow of a vertically vibrated hourglass. Int. J. Mod. Phys. B 7, 1799 (1993)

    Article  ADS  Google Scholar 

  19. Hunt M.L., Weathers R.C., Lee A.T., Brennen C.E., Wassgren C.R.: Effects of horizontal vibration on hopper flows of granular materials. Phys. Fluids 11, 68 (1999)

    Article  MATH  ADS  Google Scholar 

  20. Wassgren C.R., Hunt M.L., Freese P.J., Palamara J., Brennen C.E.: Effects of vertical vibration on hopper flows of granular material. Phys. Fluids 14, 3439 (2002)

    Article  ADS  Google Scholar 

  21. Chen K., Stone M.B., Barry R., Lohr M., McConville W., Klein K., Sheu B.L., Morss A.J., Scheidemantel T., Schiffer P.: Flux through a hole from a shaken granular medium. Phys. Rev. E 74, 011306 (2006)

    Article  ADS  Google Scholar 

  22. Pacheco-Martinez H., Van Gerner H.J., Ruiz-Suarez J.C.: Storage and discharge of a granular fluid. Phys. Rev. E 77, 021303 (2008)

    Article  ADS  Google Scholar 

  23. Davies C.E., Foye J.: Flow of granular material through vertical slots. Trans. Inst. Chem. Eng. 69, 369 (1991)

    Google Scholar 

  24. Franklin F.C., Johanson L.N.: Flow of granular material through a circular orifice. Chem. Eng. Sci. 4, 119 (1955)

    Article  Google Scholar 

  25. Chitty, C.D., Spencer, M.A.: Chemical Engineering, Tripos Part 2. Research Project Report, University of Cambridge. This document is cited in the 1982 review by Nedderman, Tuzun, Savage, and Houlsby; however, Nedderman informs us that it has been discarded without regret (1970)

  26. Chang C.S., Converse H.H., Steele J.L.: Flow rates of grain through various shapes of vertical and horizontal orifices. Trans. Am. Soc. Agr. Eng. 34, 1789 (1991)

    Google Scholar 

  27. Wambaugh J.F., Behringer R.P., Matthews J.V., Gremaud P.A.: Response to perturbations for granular flow in a hopper. Phys. Rev. E 76, 051303 (2007)

    Article  ADS  Google Scholar 

  28. Tuzun U., Houlsby G.T., Nedderman R.M., Savage S.B.: The flow of granular materials-II: Velocity distributions in slow flow. Chem. Eng. Sci. 37, 1691 (1982)

    Article  Google Scholar 

  29. Choi J., Kudrolli A., Bazant M.Z.: Velocity profile of granular flows inside silos and hoppers. J. Phys. Cond. Matt. 17, S2533 (2005)

    Article  ADS  Google Scholar 

  30. O’Hern C.S., Silbert L.E., Liu A.J., Nagel S.R.: Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  31. Thomas, C.C., Durian D.J.: in progress (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Durian.

Additional information

This work was supported by the National Science Foundation through grant DMR-0704147 and by the University of Pennsylvania through its work-study program for undergraduate students.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheldon, H.G., Durian, D.J. Granular discharge and clogging for tilted hoppers. Granular Matter 12, 579–585 (2010). https://doi.org/10.1007/s10035-010-0198-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0198-3

Keywords

Navigation