Skip to main content

Advertisement

Log in

Momentum and energy propagation in tapered granular chains

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We study momentum and energy propagation in 1D tapered chains of spherical granules which interact according to a Hertz potential. In this work we apply the binary collision approximation, which is based on the assumption that transfer of energy along the chain occurs via a succession of two-particle collisions. Although the binary theory correctly captures the trends of increase or decrease of kinetic energy and momentum, the actual values of these quantities are not in good quantitative agreement with those obtained by numerically integrating the full equations of motion. To address this difficulty we have developed a mixed numerical/analytical correction algorithm to provide an improved estimate of the velocity of the particles during pulse propagation. With this corrected velocity we are in turn able to correctly predict the momentum and kinetic energy along the chain for several tapering configurations, specifically for forward linear, forward exponential, backward linear and backward exponential tapering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The shape of the granules does not really matter as they are treated as point masses with an interaction determined by their radius of curvature and their mass. We talk about spherical granules for convenience, as is done in a great deal of the relevant literature.

References

  1. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1983)

    Article  ADS  Google Scholar 

  2. Nesterenko, V.F.: Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. J. Phys. IV 4, C8-729 (1994)

    Google Scholar 

  3. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  4. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405 (1985)

    Google Scholar 

  5. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)

    Google Scholar 

  6. Hinch, E.J., Saint-Jean, S.: The fragmentation of a line of balls by an impact. Proc. R. Soc. London, Ser. A 455, 3201 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Sen, S., Manciu, F.S., Manciu, M.: Thermalizing an impulse. Physica A 299, 551 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Wu, D.T.: Conservation principles in solitary impulse propagation through granular chains. Physica A 315, 194 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Nakagawa, M., Agui, J.H., Wu, D.T., Extramiana, D.V.: Impulse dispersion in a tapered granular chain. Granular Matter 4, 167 (2003)

    Article  Google Scholar 

  10. Doney, R.L., Sen, S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72, 041304 (2005)

    Article  ADS  Google Scholar 

  11. Sokolow, A., Pfannes, J.M.M.M., Doney, R.L., Nakagawa, M., Agui, J.H., Sen, S.: Absorption of short duration pulses by small, scalable, tapered granular chains. Appl. Phys. Lett. 87, 254104 (2005)

    Article  ADS  Google Scholar 

  12. Doney, R., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97, 155502 (2006)

    Article  ADS  Google Scholar 

  13. Melo, F., Job, S., Santibanez, F., Tapia, F.: Experimental evidence of shock mitigation in a Hertzian tapered chain. Phys. Rev. E 73, 041305 (2006)

    Article  ADS  Google Scholar 

  14. Doney, R.L., Agui, J.H., Sen, S.: Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: A system with many potential applications. J. Appl. Phys. 106, 064905 (2009)

    Article  ADS  Google Scholar 

  15. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96, 058002 (2006)

    Article  ADS  Google Scholar 

  16. Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a 1D granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  17. Hascoët, E., Herrmann, H.J.: Shocks in non-loaded bead chains with impurities. Eur. Phys. J. B 14, 183 (2000)

    Article  ADS  Google Scholar 

  18. Hascoët, E., Herrmann, H.J., Loreto, V.: Shock propagation in a granular chain. Phys. Rev. E 59, 3202 (1999)

    Article  ADS  Google Scholar 

  19. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94, 108001 (2005)

    Article  ADS  Google Scholar 

  20. Wang, P.J., Xia, J.H., Li, Y.D., Liu, C.S.: Crossover in the power-law behavior of confined energy in a composite granular chain. Phys. Rev. E 76, 041305 (2007)

    Article  ADS  Google Scholar 

  21. Sokolow, A., Bittle, E.G., Sen, S.: Solitary wave train formation in Hertzian chains. EPL 77, 24002 (2007)

    Article  ADS  Google Scholar 

  22. Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: Experiments, theory and simulations. Granular Matter 10, 13 (2007)

    Article  MATH  Google Scholar 

  23. Sen, S. et al.: Modern challenges in statistical mechanics: Patterns, noise and the interplay of nonlinearity and clomplexity. In: Kenkre, V.M. and Lindenberg, K. (eds.) AIP Conf. Proc. No.658. AIP, Melville, NY (2003)

  24. Sen, S., Hong, J., Bang, J., Avalos, E., Donery, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  25. Rosas, A., Lindenberg, K.: Pulse dynamics in a chain of granules with friction. Phys. Rev. E 68, 041304 (2003)

    Article  ADS  Google Scholar 

  26. Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K.: Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98, 164301 (2007)

    Article  ADS  Google Scholar 

  27. Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K.: Short-pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78, 051303 (2008)

    Article  ADS  Google Scholar 

  28. Rosas, A., Lindenberg, K.: Pulse velocity in a granular chain. Phys. Rev. E 69, 037601 (2004)

    Article  ADS  Google Scholar 

  29. Harbola, U., Rosas, A., Esposito, M., Lindenberg, K.: Pulse propagation in tapered granular chains: an analytic study. Phys. Rev. E 80, 031303 (2009)

    Google Scholar 

  30. Harbola, U., Rosas, A., Romero, A.H., Esposito, M., Lindenberg, K.: Pulse propagation in decorated granular chains: an analytical approach. Phys. Rev. E 80, 051302 (2009)

    Google Scholar 

  31. Harbola, U., Rosas, A., Romero, A.H., Lindenberg, K.: Pulse propagation in randomly decorated chains. Phys. Rev. E 82, 011306 (2010)

    Google Scholar 

  32. Pinto, I.L.D., Rosas, A., Romero, A.U., Lindenberg, K.: Pulse propagation in a chain of o-rings with and without precompression. Phys. Rev. E 82, 031308 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research (K. L.). A. R. acknowledges support from Bionanotec-CAPES and CNPq. L. P. M. acknowledges support by CAPES. The authors acknowledge helpful discussions with A. H. Romero and U. Harbola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Rosas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, L.P., Rosas, A. & Lindenberg, K. Momentum and energy propagation in tapered granular chains. Granular Matter 15, 735–746 (2013). https://doi.org/10.1007/s10035-013-0444-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0444-6

Keywords

Navigation