Skip to main content
Log in

Wave propagation in elasto-plastic granular systems

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Due to the nonlinear nature of the inter-particle contact, granular chains made of elastic spheres are known to transmit solitary waves under impulse loading. However, the localized contact between spherical granules leads to stress concentration, resulting in plastic behavior even for small forces. In this work, we investigate the effects of plasticity in wave propagation in elasto-plastic granular systems. In the first part of this work, a force–displacement law between contacting elastic-perfectly plastic spheres is developed using a nonlinear finite element analysis. In the second part, this force–displacement law is used to simulate wave propagation in one-dimensional granular chains. In elasto-plastic chains, energy dissipation leads to the formation and merging of wave trains, which have characteristics very different from those of elastic chains. Scaling laws for peak force at each contact point along the chain, velocity of the leading wave, local contact and total dissipation are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  2. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Physics Reports 462(2), 21 (2008)

    Google Scholar 

  3. Awasthi, A.P., Smith, K.J., Geubelle, P.H., Lambros, J.: Propagation of solitary waves in 2D granular media: a numerical study. Mech. Mater. 54, 100 (2012)

    Article  Google Scholar 

  4. Manjunath, M., Awasthi, A., Geubelle, P.H.: Wave propagation in 2D random granular media. Phys. D Nonlinear Phenom. (2013, in press)

  5. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

  6. Thornton, C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 64(2), 383 (1997)

    Google Scholar 

  7. Wang, E., Geubelle, P.H., Lambros, J.: An experimental study of the dynamic elasto-plastic contact behavior of metallic granules. J. Appl. Mech. 80(2) 021009 (2013)

    Google Scholar 

  8. Abbot, E.J., Firestone, F.A.: Specifying surface quality: a method based on accurate measurement and comparison. Mech. Eng. 55, 569 (1933)

    Google Scholar 

  9. Zhao, Y., Maletta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86 (2000)

    Google Scholar 

  10. Vu-Quoc, L., Zhang, X.: An elasto-plastic contact force displacement model in the normal direction: displacement-driven version. Proc. Roy. Soc. Lond. A 455(1991), 4013 (1999)

    Google Scholar 

  11. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657 (2002)

    Google Scholar 

  12. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343 (2005)

    Google Scholar 

  13. Nesterenko, V.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733 (1983)

    Google Scholar 

  14. Vergara, L.: Model for dissipative highly nonlinear waves in dry granular systems. Phys. Rev. Lett. 104(11), 118001 (2010)

    Google Scholar 

  15. Rosas, A., Romero, A.H., Nesterenko, V., Lindenberg, K.: Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98(16), 164301 (2007)

    Google Scholar 

  16. Rosas, A., Romero, A.H., Nesterenko, V., Lindenberg, K.: Short pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78(5), 051303 (2008)

    Google Scholar 

  17. Carretero-Gonzalez, R., Khatri, D., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102(2), 024102 (2009)

    Google Scholar 

  18. Khatri, D., Ngo, D., Daraio, C.: Highly nonlinear solitary waves in chains of cylindrical particles. Granul. Matter 14(1), 63 (2012)

    Google Scholar 

  19. Nguyen, N.S., Brogliato, B.: Shock dynamics in granular chains: numerical simulations and comparison with experimental tests. Granul. Matter 14(3), 341 (2012)

    Google Scholar 

  20. Manciu, M., Sen, S., Hurd, A.J.: Impulse propagation in dissipative and disordered chains with power-law repulsive potentials. Phys. D Nonlinear Phenom. 157(3), 226 (2001)

    Google Scholar 

  21. Manjunath, M., Awasthi, A.P., Geubelle, P.H.: Wave propagation in random granular chains. Phys. Rev. E 85(3), 031308 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support by the Army Research Office through the Multi University Research Initiative Project Number W911NF0910436 (Dr. David Stepp, program director).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe H. Geubelle.

Appendix: Energy dissipation

Appendix: Energy dissipation

The energy dissipation at a contact is given by the expression (31), where \(\alpha = \alpha _{max}\) is the maximum relative displacement attained at the contact. The total energy dissipated in the system upto location \(x_N\), as described by Eqs. (28–30) is given by (32), where \(\tilde{x} = x/R^*\) and \(E_t = d_0\left( \tilde{x}_t - \tilde{x}_1\right) + d_1 a\tilde{I} b \left( e^{-b\tilde{x}_1} - e^{-b\tilde{x}_t} \right) + 2 d_2 \left( a\tilde{I}\right) ^2 b \left( e^{-2 b \tilde{x}_1} - e^{-2 b \tilde{x}_t}\right) \) is the energy dissipated by the contact points in the first regime.

$$\begin{aligned} \tilde{E}_{dis}\!&= \! \dfrac{1}{F_y \alpha _y}\int \limits _{0}^{\alpha } \left( F_{load} \!-\! F_{unload} \right) d\alpha \nonumber \\ \!&= \! \left\{ \begin{array}{l} \left( \dfrac{3}{1.6}\right) \dfrac{ c_1 }{2} \left( \left( c_4 \tilde{\alpha } + c_5\right) ^2 \left( c_4 \alpha _0 \!+\! c_5 \right) ^2 \right) \\ + \left( \dfrac{3}{1.6} \right) \dfrac{c_2 }{c_3^2}\left( -e^{-c_3\left( \tilde{\alpha } \!-\! 1\right) } \left( c_3 \tilde{\alpha } \!+\! c_4 \!+\! c_3 c_5 \right) \right. \\ \left. + e^{-c_3\left( \alpha _0-1\right) }\left( c_3 \alpha _0 \!+\! c_4 \!+\! c_3 c_5 \right) \right) \\ + \left( \dfrac{3}{1.6}\right) \dfrac{c_1 \sigma _y }{c_6 \!+\! 1}\left( \alpha ^{c_6\!+\!1}_0 \!-\! 1 \right) \\ + \left( \dfrac{3}{1.6}\right) \dfrac{c_2 e^{c_3} }{c_3^{c_6+1}} \left( \varGamma \left( c_6\!+\!1,c_3\right) \!- \!\varGamma \left( c_6\!+\!1 , c_3 \alpha _0\right) \right) \\ + \dfrac{2}{5} \!-\! \dfrac{ \tilde{F}\left( \tilde{\alpha } - \tilde{\alpha }_R\right) }{n} \quad \quad \text{ if } \,\, \alpha _0 \le \tilde{\alpha } \\ \left( \dfrac{3}{1.6}\right) \dfrac{c_1 \sigma _y }{c_6 \!+\! 1}\left( \tilde{\alpha }^{c_6+1} \!-\! 1 \right) \\ + \left( \dfrac{3}{1.6} \right) \dfrac{c_2 e^{c_3} }{c_3^{c_6+1}} \left( \varGamma \left( c_6+1,c_3\right) - \varGamma \left( c_6+1 , c_3 \tilde{\alpha } \right) \right) \\ + \dfrac{2}{5} - \dfrac{ \tilde{F}\left( \tilde{\alpha } \!-\! \tilde{\alpha }_R\right) }{n} \quad \quad \text{ if } 1\! <\! \tilde{\alpha } < \alpha _0 \\ 0 \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \text{ otherwise, } \end{array}\right. \end{aligned}$$
(31)

where the constants \(c_i\) are as defined in Sect. 2 and \(\varGamma (.,.)\) is the Gamma function. The total energy dissipation is

$$\begin{aligned} \dfrac{4 E_{tot}}{F_y \alpha _y}\!=\! \left\{ \begin{array}{l} d_0 \left( \tilde{x}_N \!-\! \tilde{x}_1\right) \!+\! d_1 a\tilde{I} b\left( e^{-b \tilde{x}_1} \!-\! e^{-b \tilde{x}_N } \right) \\ + 2 d_2 \left( a\tilde{I}\right) ^2 b \left( e^{-2 b \tilde{x}_1} \!-\! e^{-2 b \tilde{x}_N } \right) ,\quad \hbox { if }\, \tilde{x_N} \!<\! \tilde{x}_t \\ {E}_t \!+\! d_0 (\tilde{x}_N\!-\! \tilde{x}_t) \!+\! d_1 C \tilde{I} \ln \left( \dfrac{x_N}{x_t}\right) \\ - d_2 \left( C \tilde{I}\right) ^2 \left( \dfrac{1}{\tilde{x}_N} \!-\! \dfrac{1}{\tilde{x}_t}\right) , \quad \hbox { otherwise}. \end{array}\right. \end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, R.K., Awasthi, A.P. & Geubelle, P.H. Wave propagation in elasto-plastic granular systems. Granular Matter 15, 747–758 (2013). https://doi.org/10.1007/s10035-013-0449-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0449-1

Keywords

Navigation