Skip to main content
Log in

Analysis of bender element test interpretation using the discrete element method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

While bender element testing is now well-established as a laboratory technique to determine soil stiffness, a robust technique to interpret the data remains elusive. A discrete element method (DEM) model of a face-centred cubic packing of uniform spheres was created to simulate bender element tests to investigate this test from a fundamental perspective. During the DEM simulations transmitter and receiver signals were recorded, analogous to the data available in laboratory tests, and these macro-scale data were supplemented with particle scale measurements (forces, stresses and displacements). A range of approaches previously applied in experimental and numerical studies were used to analyse the resulting data in both the time and frequency domains. The shortcomings in these approaches are clear from the differences in the resultant shear stiffness values and the frequency-dependent nature of the values. The particle-scale data enabled visualization of the passage of the wave through the sample, and it was found not to be possible to precisely link the arrival of the shear wave at the receiver and any of the previously proposed characteristic points along the signal recorded at the receiver. The most reliable determination of the shear wave velocity was obtained by applying a two-dimensional fast Fourier transform (2D FFT) to the data describing the velocity of the particles lying between the transmitter and receiver elements. Use of the DEM model and this 2D FFT approach facilitated the sensitivity of the system response to small variations in the interparticle force–displacement law (the contact model) to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alvarado, G., Coop, M.R.: On the performance of bender elements in triaxial tests. Géotechnique 62(1), 1–17 (2012)

    Google Scholar 

  2. Yang, J., Gu, X.: Shear stiffness of granular material at small strains: does it depend on grain size? Géotechnique 63(2), 165–179 (2013)

    Article  MathSciNet  Google Scholar 

  3. Shirley, D., Hampton, L.: Shear wave measurements in laboratory sediments. J. Acoust. Soc. Am. 63(2), 607–613 (1978)

    Article  ADS  Google Scholar 

  4. Yamashita, S., Kawaguchi, T., Nakata, Y.: Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils Found. 49(4), 631–650 (2009)

    Article  Google Scholar 

  5. da Fonseca, A., Ferreira, C., Fahey, M.: A framework interpreting bender element tests, combining time-domain and frequency-domain methods. Geotech. Test. J. 32(2), 1–17 (2009)

    Google Scholar 

  6. Clayton, C.R.I.: Stiffness at small strain: research and practice. Géotechnique 61(1), 5–37 (2011). doi:10.1680/geot.2011.61.1.5

    Article  Google Scholar 

  7. Arroyo, M., Muir Wood, D., Greening, P.D.: Source near-field effects and pulse tests in soil samples. Géotechnique 53(3), 337–345 (2003). doi:10.1680/geot.53.3.337.37277

    Article  Google Scholar 

  8. Leong, E., Cahyadi, J., Rahardjo, H.: Simulating bender element tests using the distinct element method. Can. Geotech. J. 46, 792–812 (2009). doi:10.1139/T09-026

    Article  Google Scholar 

  9. Marketos, G., O’Sullivan, C.: A micromechanics-based analytical method for wave propagation through a granular material. Soil Dyn. Earthq. Eng. 45, 25–34 (2013)

    Article  Google Scholar 

  10. Khidas, Y., Jia, X.: Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy. Phys. Rev. E 81(2), 021303 (2010). doi:10.1103/PhysRevE.81.021303

    Article  ADS  Google Scholar 

  11. Suwal, L.P., Kuwano, R.: Disk shaped piezo-ceramic transducer for P and S wave measurement in a laboratory soil specimen. Soils Found. 53(4), 510–524 (2013). doi:10.1016/j.sandf.2013.06.004

    Article  Google Scholar 

  12. Hazzard, J.F., Maxwell, S.C., Young, R.P.: Micromechanical modelling of acoustic emissions. Soc. Pet. Eng. 519–526 (1998)

  13. Li, L., Holt, R.M.: Particle scale reservoir mechanics. Oil Gas Sci. Technol. 57(5), 525–538 (2002). doi:10.2516/ogst:2002035

    Article  Google Scholar 

  14. Mouraille, O., Mulder, W.A., Luding, S.: Sound wave acceleration in granular materials. J. Stat. Mech: Theory Exp. 07(23), 1–15 (2006). doi:10.1088/1742-5468/2006/07/P07023

    Google Scholar 

  15. Xu, X., Ling, D., Cheng, Y.P., Chen, Y.: Micromechanical study on shear wave velocity of granular materials using discrete element methods. In: Wu, C.-Y. (eds.) Discrete Element Modelling of Particulate Media, pp. 255–263. Royal Society of Chemistry Publishing, Birmingham (2012)

  16. O’Donovan, J., O’Sullivan, C., Marketos, G.: Two-dimensional discrete element modelling of bender element tests on an idealised granular material. Granul. Matter 14(6), 733–747 (2012). doi:10.1007/s10035-012-0373-9

    Article  Google Scholar 

  17. Gu, X., Yang, J.: A discrete element analysis of elastic properties of granular materials. Granul. Matter 15(2), 139–147 (2013). doi:10.1007/s10035-013-0390-3

    Article  MathSciNet  Google Scholar 

  18. Rowe, P.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Sci. Ser A: Math. Phys. Sci. 269(1339), 500–527 (1962)

    Article  ADS  Google Scholar 

  19. Thornton, C.: The conditions for failure of a face-centered cubic array of uniform rigid spheres. Géotechnique 29(4), 441–459 (1979). doi:10.1680/geot.1979.29.4.441

    Article  Google Scholar 

  20. Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 48, 498–505 (2008). doi:10.1016/j.ultras.2008.03.009

    Article  Google Scholar 

  21. Santamarina, J.C., Cascante, G.: Stress anisotropy and wave propagation: a micromechanical view. Can. Geotech. J. 33(5), 770–782 (1996). doi:10.1139/t96-102-323

    Article  Google Scholar 

  22. Crampin, S.: A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 3, 343–391 (1981)

    Article  MATH  Google Scholar 

  23. Itasca Consulting Group: PFC3D Version 4.0 User Manual, Itasca Consulting Group, Minneapolis (2007)

  24. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  25. Cundall, P.A., Strack, O.D.L.: The distinct element method as a tool for research in granular media. Report to the National Science Foundation (1979)

  26. Cavarretta, I., O’Sullivan, C., Ibraim, E., Lings, M., Hamlin, S., Muir Wood, D.: Characterization of artificial spherical particles for DEM validation studies. Particuology 10(2), 209–220 (2012). doi:10.1016/j.partic.2011.10.007

    Article  Google Scholar 

  27. Thornton, C., Randall, C.: Applications of theoretical contact mechanics to solid particle system simulation. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 133–142. Elsevier (1988)

  28. Thornton, C., Yin, K.: Impact of elastic spheres with and without adhesion. Powder Technol. 65, 153–166 (1991)

    Article  Google Scholar 

  29. Cavarretta, I., Coop, M.R., O’Sullivan, C.: The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60(6), 413–423 (2010). doi:10.1680/geot.2010.60.6.413

    Article  Google Scholar 

  30. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    MATH  MathSciNet  Google Scholar 

  31. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  32. Hamlin, S.: Experimental Investigation of Wave Propagation through Granular Material, PhD thesis (in preparation), University of Bristol (2014)

  33. Hardy, S.: The Implementation and Application of Dynamic Finite Element Analysis to Geotechnical Problems, PhD thesis, Imperial College London (2003)

  34. Jovičić, V., Coop, M.R., Simić, M.: Objective criteria for determining Gmax from bender element tests. Géotechnique 46(2), 357–362 (1996). doi:10.1680/geot.1996.46.2.357

    Article  Google Scholar 

  35. Judge, J.A., Houston, B.H., Photiadis, D.M., Herdic, P.C.: Effects of disorder in one- and two-dimensional micromechanical resonator arrays for filtering. J. Sound Vib. 290(3–5), 1119–1140 (2006). doi:10.1016/j.jsv.2005.05.003

    Article  ADS  Google Scholar 

  36. O’Donovan, J.: Micromechanics of Wave Propagation through Granular Material, PhD thesis, Imperial College London (2013)

  37. Lee, J.-S., Santamarina, J.C.: Bender elements: performance and signal interpretation. J. Geotech. Geoenviron. Eng. 131(9), 1063–1070 (2005). doi:10.1061/(ASCE)1090-0241(2005)131:9(1063)

    Article  Google Scholar 

  38. Sanchez-Salinero, I., Rosset, J.M., Stokoe II, K.H.: Analytical studies of body wave propagation and attenuation. In: University of Texas, p. Rep. No. GR-86-15 (1986)

  39. Arroyo, M., Muir Wood, D., Greening, P.D., Medina, L., Rio, J.: Effects of sample size on bender-based axial G0 measurements. Géotechnique 56(1), 39–52 (2006). doi:10.1680/geot.2006.56.1.39

    Article  Google Scholar 

  40. Ferreira, C., da Fonseca, A.: International Parallel Tests on Bender Elements at the University of Porto, Portugal (2005)

  41. Duffy, J., Mindlin, R.D.: Stress–strain relations and vibrations of a granular medium. ASME J. Appl. Mech. 24, 585–593 (1957)

    MathSciNet  Google Scholar 

  42. Greening, P.D., Nash, D.F.T.: Frequency domain determination of G0 using bender elements. Geotech. Test. J. 72(3), 1–7 (2004). doi:10.1520/GTJ11192

    Google Scholar 

  43. Lawney, B.P., Luding, S.: Frequency filtering in disordered granular chains. Acta Mech 225(8), 2385–2407 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  44. De Mol, L.: Wave Propagation in Granular Material: Theoretical and Numerical Analysis in Comparison to Experimental Data, MSc dissertation, Ruhr-University Bochum (2013)

  45. Chang, C., Liao, C.L.: Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 26(4), 437–453 (1990). doi:10.1016/0020-7683(90)90067-6

    Article  MATH  Google Scholar 

  46. Kruyt, N.P., Agnolin, I., Luding, S., Rothenburg, L.: Micromechanical study of elastic moduli of loose granular materials. J. Mech. Phys. Solids 58, 1286–1301 (2010). doi:10.1016/j.jmps.2010.06.003

    Article  ADS  MathSciNet  Google Scholar 

  47. Santamarina, J., Klein, A., Fam, M.A.: Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring. Wiley, Chicester, UK (2001)

  48. O’Sullivan, C.: Particulate Discrete Element Modelling—A Geomechanics Perspective. Taylor and Francis, New York (2011)

  49. Marketos, G., Bolton, M.: Flat boundaries and their effect on sand testing. Int. J. Numer. Anal. Methods Geomech. 34, 821–837 (2010). doi:10.1002/nag

    MATH  Google Scholar 

  50. Lings, M.L.: Cubic Anisotropy, Personal Communication. University of Bristol, Bristol (2013)

  51. Norris, A.N.: Poisson’s ratio in cubic materials. Proc. R. Soc A: Math. Phys. Eng. Sci. 462(2075), 3385–3405 (2006). doi:10.1098/rspa.2006.1726

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35(2), 213–226 (1987)

    Article  ADS  MATH  Google Scholar 

  53. Mouraille, O.: Sound propagation in dry granular materials?: discrete element simulations, theory, and experiments, PhD thesis, University of Twente (2009)

  54. Merkel, A., Tournat, V., Gusev, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011). doi:10.1103/PhysRevLett.107.225502

    Article  ADS  Google Scholar 

  55. Merkel, A., Tournat, V., Gusev, V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82(3), 031305 (2010). doi:10.1103/PhysRevE.82.031305

    Article  ADS  Google Scholar 

  56. McDowell, G., Bolton, M.: Micro mechanics of elastic soil. Soils Found. 41(6), 147–152 (2001)

    Article  Google Scholar 

  57. Goddard, J.D.: Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc. R. Soc. Sci. Ser A: Math. Phys. Sci. 430, 105–131 (1990). doi:10.1098/rspa.1990.0083

    Article  ADS  MATH  Google Scholar 

  58. Yimsiri, S., Soga, K.: Micromechanics-based stress-strain behaviour of soils at small strains. Géotechnique 50(5), 559–571 (2000). doi:10.1680/geot.2000.50.5.559

    Article  Google Scholar 

  59. Greenwood, J.A., Tripp, J.H.: The elastic contact of rough spheres. J. Appl. Mech. 34(1), 153–159 (1967)

    Article  ADS  Google Scholar 

  60. Somfai, E., Roux, J.N., Snoeijer, J.H., van Hecke, M., van Saarloos, W.: Elastic wave propagation in confined granular systems. Phys. Rev. E 72(2), 021301–021321 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the EPSRC through Grant EP/G064954/1. The authors would particularly like to acknowledge the support of our project collaborators at the University of Bristol who are Dr. Martin Lings, Dr. Erdin Ibraim, Mr. Simon Hamlin, and Dr. Ignazio Cavarretta (now at the University of Surrey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O’Donovan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donovan, J., O’Sullivan, C., Marketos, G. et al. Analysis of bender element test interpretation using the discrete element method. Granular Matter 17, 197–216 (2015). https://doi.org/10.1007/s10035-015-0552-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0552-6

Keywords

Navigation