Skip to main content
Log in

Reconstruction of granular railway ballast based on inverse discrete Fourier transform method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a particle shape characterization and reconstruction method to describe the geometrical information of granular railway ballast. The outline of a real granular particle is segmented and transformed as discrete time domain signals based on Fourier transform method. Then, the discrete Fourier transform algorithm is developed and applied to convert discrete time domain signals into a discrete Fourier spectrum. Meanwhile, the normalized amplitudes are defined as Fourier descriptors, which is found to be applicable to characterize and reconstruct particle contour. Further, the proposed method is validated by comparing the contours of the real particle with that of reconstructed particle. Moreover, the shape indexes of particles Fourier descriptors and reconstruction of ballasted gravel are illustrated and the the results show that the geometrical parameters can be classified as three levels which can represent the geometrical characteristics in terms of macroscopical and microscopic structure. The inverse discrete Fourier transform can quantitatively control the shape of reconstructed particles by controlling the value and distribution of Fourier descriptors, which matchs the three levels of shape indexes. Furthermore, it can be found that a large number of virtual particles with similar geometrical features can be reconstructed using the proposed Fourier descriptors in a rapid and convenient manner, which is beneficial for providing a virtual test sample for the numerical modeling of realistic granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Meloy, T.P.: Fast Fourier transform applied to shape analysis of particle silhouettes to obtain geometrical data. Powder Technol. 17(1), 27–35 (1977)

    Article  Google Scholar 

  2. Qing-bing, Liu, Wei, Xiang, Budhu, M., Den-shan, Cui: Study of particle shape quantification and effect on mechanical property of sand. Rock Soil Mech. 32(1), 190–197 (2011)

    Google Scholar 

  3. Hentschel, Mark L., Page, Neil W.: Selection of descriptors for particle shape characterization. Part. Part. Syst. Charact. 20(1), 25–38 (2003)

    Article  Google Scholar 

  4. Mora, C.F., Kwan, A.K.H., Chan, H.C.: Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 30(3), 351–358 (2000)

    Article  Google Scholar 

  5. Kwan, A.K.H., Mora, C.F., Chan, H.C.: Particle shape analysis of coarse aggregate using digital image processing. Cem. Concr. Res. 29(9), 1403–1410 (2000)

    Article  Google Scholar 

  6. Saintcyr, B., Szarf, K., Voivret, C., et al.: Particle shape dependence in 2D granular media. EPL 98(4), 155–161 (2012)

    Google Scholar 

  7. Chang-sheng, L.I., Zhang, D., Wang, H.X., Sha-Sha, D.U.: 3D mesh generation for soil–rock mixture based on CT scanning. Rock Soil Mech. 35(9), 2731–2736 (2014)

    Google Scholar 

  8. Yue, Z.Q., Chen, S., Tham, L.G.: Finite element modeling of geomaterials using digital image processing. Comput. Geotech. 30(5), 375–397 (2003)

    Article  Google Scholar 

  9. Xu, W.J., Yue, Z.Q., Hu, R.L.: Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method. Int. J. Rock Mech. Min. Sci. 45(5), 749–762 (2008)

    Article  Google Scholar 

  10. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 30(3), 331–336 (2015)

    Article  Google Scholar 

  11. Ng, T.T.: Particle shape effect on macro- and micro-behavior of monodisperse ellipsoids. Int. J. Numer. Anal. Methods Geomech. 33(4), 511–527 (2010)

    Article  MATH  Google Scholar 

  12. Ouadfel, H., Rothenburg, L.: “Stress-force fabric” relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  13. Lin, X., Ng, T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Article  Google Scholar 

  14. Zhang, J., Jin, N.G., Jin, X.Y., Zheng, J.J.: Numerical simulation method for polygonal aggregate distribution in concrete. J. Zhejiang Univ. 38(5), 581–585 (2004)

    Google Scholar 

  15. Garboczi, E.J.: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concr. Res. 32(10), 1621–1638 (2002)

    Article  Google Scholar 

  16. Mollon, Guilhem, Zhao, Jidong: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matter 14(5), 621–638 (2012)

    Article  Google Scholar 

  17. Cheng, Y., Guo, S., Lai, H.: Computer simulation of random packing of spheric particles. J. Univ. Sci. Technol. Beijing 21(4), 387–391 (1999)

    Google Scholar 

  18. Azema, E., Radjai, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76(1 Pt 1), 011301 (2007)

    Article  ADS  Google Scholar 

  19. Azema, E., Radjai, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81(5 Pt 1), 051304 (2010)

  20. Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.A., Ramaioli, M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2), 119–126 (2005)

    Article  MATH  Google Scholar 

  21. Wang, H., Wang, J., Chen, J.: Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure. Eng. Fract. Mech. 132, 104–119 (2014)

    Article  Google Scholar 

  22. Chen, J., Wang, H., Li, M., Li, L.: Evaluation of pavement responses and performance with thermal modified asphalt mixture. Mater. Des. 111, 88–97 (2016)

    Article  Google Scholar 

  23. Chen, J., Wang, H., Li, L.: Determination of effective thermal conductivity of asphalt concrete with random aggregate microstructure. J. Mater. Civ. Eng. 11(3), 04015045 (2015)

    Article  Google Scholar 

  24. Chen, J., Wang, H., Li, L.: Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures. Int. J. Pavement Eng. 18(9), 824–836 (2017)

  25. Chen, J., Zhang, M., Wang, H., Li, L.: Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Appl. Therm. Eng. 84, 368–374 (2015)

    Article  Google Scholar 

  26. Azema, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2008)

    Article  Google Scholar 

  27. Pena, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9(3), 279–291 (2007)

    Article  MATH  Google Scholar 

  28. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69–80 (2007)

    Google Scholar 

  29. Mollon, G., Richefeu, V., Daudon, D., Villard, P.: Assessment of DEM Parameters for Rock Mass Propagation. Second World Landslide Forum, Roma (2011)

    Google Scholar 

  30. Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. Atmos. 117(F2), 2036 (2012)

    Article  ADS  Google Scholar 

  31. Tillemans, H.J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Physica A 217(3–4), 261–288 (1995)

  32. Galindotorres, S.A., Pedroso, D.M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E 81(6 Pt 1), 061303 (2010)

    Article  ADS  Google Scholar 

  33. Galindotorres, S.A., Munoz, J.D., Alonsomarroquin, F.: Minkowski–Voronoi diagrams as a method to generate random packing of spheropolygons for the simulation of soils. Phys. Rev. E 82(5 Pt 2), 056713 (2010)

    Article  ADS  Google Scholar 

  34. Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87(6), 062203 (2013)

    Article  Google Scholar 

  35. Smith, Steven W.: The Scientist and Engineer’s Guide to Digital Signal Processing, pp. 141–168. California Technical Publishing, San Diego (2001)

  36. Bowman, E.T.: Particle shape characterization using Fourier descriptor analysis. Geotechnique 51(6), 545–554 (2001)

    Article  Google Scholar 

  37. Standard for Railway Industry in the People’s Republic of China. Beijing: Ministry of Railways of the People’s Republic of China (TB/T 2140) (2008)

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51478477; 51308554), the Guizhou Provincial Department of Transportation Foundation (Nos. 2014122005; 2013-121-013). All financial supports were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Lianheng or Dan Han-Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

Table 5 Scale parameter and shape parameter under the Weibull distribution

Appendix 2

Table 6 Statistical results of the confidence intervals of the Fourier descriptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lianheng, Z., Dongliang, H., Han-Cheng, D. et al. Reconstruction of granular railway ballast based on inverse discrete Fourier transform method. Granular Matter 19, 74 (2017). https://doi.org/10.1007/s10035-017-0761-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0761-2

Keywords

Navigation