Skip to main content
Log in

Image based shape characterization of granular materials and its effect on kinematics of particle motion

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Quantification of particle shape features to characterize granular materials remains an open problem till date, owing to the complexity involved in obtaining the geometrical parameters necessary to adequately compute the shape components (sphericity, roundness and roughness). A new computational method based on image analysis and filter techniques is proposed in this paper to overcome this difficulty. In this method, operations are performed on binary images of particles obtained from raster images (collection of pixels) by the process of image segmentation. The boundary of particles captured in 2D images consist of micro, meso and macro scale features on which filter techniques are applied to remove the micro level features for the quantification of particle roughness and to obtain a roughness free boundary. A robust algorithm is then written and implemented in MATLAB to obtain the complete geometry of the particle boundary (free from roughness features) and to identify the precise corner and non-corner regions along the boundary. This information is used to quantify the roundness (as per Wadell in J Geol 40:443–451, 1932) and sphericity of particles. The proposed methodology to measure roundness and sphericity is compared against standard visual charts provided by earlier researchers. Finally, the methodology is demonstrated on real soil particles falling across a wide range of sizes, shapes and mineralogical compositions. Also, an idea to comprehend the kinematics of particle motion based on its concavo-convex features is discussed with two proposed novel descriptors and a visual classification chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 5, 591–602 (2006)

    Article  Google Scholar 

  2. Saint-Cyr, B., Delenne, J.Y., Radjai, F., Sornay, P.: Rheology of granular materials composed of nonconvex particles. Phys. Rev. E 84, 041302 (2011)

    Article  ADS  Google Scholar 

  3. Barrett, P.J.: The shape of rock particles, a critical review. Sedimentology 27, 291–303 (1980)

    Article  ADS  Google Scholar 

  4. Liu, Z., Zhao, J., Mollon, G.: The role of irregular shape on rolling and sliding behavior of particles in granular assembly. In: Proceedings of the Twenty-Sixth KKHTCNN Symposium on Civil Engineering, November 18–20, 2013, Singapore (2013)

  5. Wentworth, C.K.: A laboratory and field study of cobble abrasion. J. Geol. 27, 507–521 (1919)

    Article  ADS  Google Scholar 

  6. Wentworth, C.K.: A method of measuring and plotting the shapes of pebbles. Bull. U.S. Geol. Surv. 730C, 91–102 (1922)

    Google Scholar 

  7. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40, 443–451 (1932)

    Article  ADS  Google Scholar 

  8. Tickell, F.G.: The Examination of Fragmental Rocks, pp. 6–7. Stanford University Press, Palo Alto (1931) (known through Krumbein and Pettijohn, 1938, p. 282)

  9. Riley, N.A.: Projection sphericity. J. Sediment. Res. 11, 94–97 (1941)

    Google Scholar 

  10. Russell, R.D., Taylor, R.E.: Roundness and shape of Mississippi River sands. J. Geol. 45(3), 225–267 (1937)

    Article  ADS  Google Scholar 

  11. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 11, 64–72 (1941)

    Article  Google Scholar 

  12. Pettijohn, F.J.: Sedimentary Rocks. Harper and Brothers, New York (1949)

    Google Scholar 

  13. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment. Res. 23, 117–119 (1953)

    Article  Google Scholar 

  14. Wadell, H.: Sphericity and roundness of rock particles. J. Geol. 41, 310–331 (1933)

    Article  ADS  Google Scholar 

  15. Pentland, A.: A method of measuring the angularity of sands. Proc. Trans. R. Soc. Can. Ser. 21(3), 43 (1927)

    Google Scholar 

  16. Cox, E.P.: A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1, 179–183 (1927)

    Google Scholar 

  17. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43, 250–280 (1935)

    Article  ADS  Google Scholar 

  18. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Geotechnique 65, 494–506 (2015)

    Article  Google Scholar 

  19. Krumbein, W.C., Sloss, L.L.: Stratigraphy and sedimentation. Soil Sci. 71, 401 (1951)

    Article  Google Scholar 

  20. Sozer. Z.B.: Two-dimensional characterization of topographies of geomaterial particles and surfaces. Ph.D. dissertation, Georgia Institute of Technology, Atlanta, USA, p. 438 (2005)

  21. Masad, E., Button, J., Papagiannakis, T.: Fine-aggregate angularity: automated image analysis approach. Transp. Res. Rec. J Transp. Res. Board 1721, 66–72 (2000)

    Article  Google Scholar 

  22. Al-Rousan, T., Masad, E., Tutumluer, E., Pan, T.: Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Constr. Build. Mater. 21(5), 978–990 (2007)

    Article  Google Scholar 

  23. Tafesse, S., Robison Fernlund, J.M., Sun, W., Bergholm, F.: Evaluation of image analysis methods used for quantification of particle angularity. Sedimentology 4, 1100–1110 (2013)

    Article  ADS  Google Scholar 

  24. Sun, Y., Indraratna, B., Nimbalkar, S.: Three-dimensional characterisation of particle size and shape for ballast. Geotech. Lett. 4(3), 197–202 (2014)

    Article  Google Scholar 

  25. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matter 15(1), 95–108 (2013)

    Article  Google Scholar 

  26. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Géotech. Lett. 2(3), 107–112 (2012)

    Article  Google Scholar 

  27. Lin, C.L., Miller, J.D.: 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technol. 154(1), 61–69 (2005)

    Article  Google Scholar 

  28. Garboczi, E.J., Bullard, J.W.: 3D analytical mathematical models of random star-shape particles via a combination of X-ray computed microtomography and spherical harmonic analysis. Adv. Powder Technol. (2016). https://doi.org/10.1016/j.apt.2016.10.014

    Google Scholar 

  29. Singh, I., Oberoi, A.: Comparison between square pixel structure and hexagonal pixel structure in digital image processing. Int. J. Comput. Sci. Trends Technol. 3, 176–181 (2015)

    Google Scholar 

  30. Press, W.H., Teukolsky, S.A., Veltterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  31. Raja, J., Muralikrishnan, B., Fu, S.: Recent advances in separation of roughness, waviness and form. Precis. Eng. 26, 222–235 (2002)

    Article  Google Scholar 

  32. Brinkmann, S., Bodschwinna, H., Lemke, H.W.: Development of robust Gaussian regression filter for three-dimensional surface analysis. In: X International Colloquium on Surfaces, Chemnitz University of Technology, Chemnitz, Germany, pp. 122–132 (2000)

  33. Muralikrishnan, B., Raja, J.: Computational Surface and Roundness Metrology. Springer, London (2008)

    Google Scholar 

  34. Gerken, P.: Object-based analysis-synthesis coding of image sequences at very low bit-rates. IEEE Trans. Circuits Syst. Video Technol. 4, 228–235 (1994)

    Article  Google Scholar 

  35. Altunbasak, Y., Tekalp, A.M.: Occlusion-adaptive, content-based mesh design and forward tracking. IEEE Trans. Image Process. 6, 1270–1280 (1997)

    Article  ADS  Google Scholar 

  36. Hawkins, A.E.: The Shape of Powder-Particle Outlines, vol. 150. Research Studies Press Ltd., Wiley, Chichester (1993)

    Google Scholar 

  37. Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112, 205–216 (1990)

    Article  Google Scholar 

  38. Edil, T.B., Krizek, R.J., Zelasko, J.S.: Effect of grain characteristics on packing of sands. In: Istanbul Conference on SM and FE, vol. 1, pp. 46–54 (1975)

  39. Rouse, P.C., Fannin, R.J., Shuttle, D.A.: Influence of roundness on the void ratio and strength of uniform sand. Géotechnique 3, 227–231 (2008)

    Article  Google Scholar 

  40. Bareither, C.A., Edil, T.B., Benson, C.H., Mickelson, D.M.: Geological and physical factors affecting the friction angle of compacted sands. J. Geotech. Geoenviron. Eng. 10, 1476–1489 (2008)

    Article  Google Scholar 

  41. Cavarretta, I., Coop, M., O’sullivan, C.: The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 6, 413–423 (2010)

    Article  Google Scholar 

  42. Yang, J., Wei, L.M.: Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 12, 1111–1125 (2012)

    Article  Google Scholar 

  43. Hyslip, J.P., Vallejo, L.E.: Fractal analysis of the roughness and size distribution of granular materials. J. Eng. Geol. 3, 231–244 (1997)

    Article  Google Scholar 

  44. Janoo, V.: Quantification of shape, angularity, and surface texture of base course materials (No. CRREL-SR-98-1). Cold Regions Research and Engineering Laboratory. US Army Corps of Engineers, Vermont Agency of Transportation, special report, pp. 98–101 (1998)

  45. Bowman, E.T., Soga, K., Drummnond, W.: Particle shape characterization using Fourier descriptor analysis. Geotechnique 51, 545–554 (2001)

    Article  Google Scholar 

  46. Fonseca, J., O’Sullivan, C.: A re-evaluation of the Fourier descriptor approach to quantifying sand particle geometry. In: 4th International Symposium on Deformation Characteristics of Geomaterials, Atlanta, Georgia, USA (2008)

  47. Roussillon, T., Piégay, H., Sivignon, I., Tougne, L., Lavigne, F.: Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 10, 1992–2000 (2009)

    Article  ADS  Google Scholar 

  48. Altuhafi, F., O’sullivan, C., Cavarretta, I.: Analysis of an image-based method to quantify the size and shape of sand particles. J. Geotech. Geoenviron. Eng. 8, 1290–1307 (2013)

    Article  Google Scholar 

  49. Itasca: PFC3D Manual. Itasca Consulting Group Inc., Minneapolis (2006)

  50. DEM Solutions: EDEM v1.1 Manual. DEM Solutions, Edinburgh (2006)

  51. Ferellec, J.F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 5, 459–467 (2010)

    Article  MATH  Google Scholar 

  52. Dove, J.E., Frost, J.D.: Peak friction behavior of smooth geomembrane-particle interfaces. J. Geotech. Geoenviron. Eng. 125(7), 544–555 (1999)

    Article  Google Scholar 

  53. Zettler, T.E., Frost, J.D., DeJong, J.T.: Shear-induced changes in smooth HDPE geomembrane surface topography. Geosynth. Int. 7(3), 243–267 (2000)

    Article  Google Scholar 

  54. Fuggle, A.R.: Geomaterial gradation influences on interface shear behavior. Ph.D. dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta (2011)

  55. Vangla, P., Latha, G.M.: Shear behaviour of sand-geomembrane interfaces through micro-topographical analysis. Geotext. Geomembr. 44(4), 592–603 (2016)

    Article  Google Scholar 

  56. Celauro, C., Ziccarelli, M., Parla, G., Valore, C.: An automated procedure for computing the packing properties of dense and locked sands by image analysis of thin sections. Granul. Matter 16(6), 867–880 (2014)

    Article  Google Scholar 

  57. Liu, Z., Zhao, J., Mollon, G.: The influence of particle shape for granular media: a Fourier-shape-descriptor-based micromechanical study. In: Kumar, K., Biscontin, G., Kuo, M. (eds.) Geomechanics from Micro to Macro Kenichi Soga, pp. 237–242. Taylor & Francis Group, London (2015)

    Google Scholar 

  58. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55, 31–63 (2008)

    Google Scholar 

  59. Lees, G.: A new method for determining the angularity of particles. Sedimentology 3(1), 2–21 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth Vangla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vangla, P., Roy, N. & Gali, M.L. Image based shape characterization of granular materials and its effect on kinematics of particle motion. Granular Matter 20, 6 (2018). https://doi.org/10.1007/s10035-017-0776-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0776-8

Keywords

Navigation