Skip to main content
Log in

The role of hydromechanical coupling in fractured rock engineering

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This paper provides a review of hydromechanical (HM) couplings in fractured rock, with special emphasis on HM interactions as a result of, or directly connected with human activities. In the early 1960s, the coupling between hydraulic and mechanical processes in fractured rock started to receive wide attention. A series of events including dam failures, landslides, and injection-induced earthquakes were believed to result from HM interaction. Moreover, the advent of the computer technology in the 1970s made possible the integration of nonlinear processes such as stress–permeability coupling and rock mass failure into coupled HM analysis. Coupled HM analysis is currently being applied to many geological engineering practices. One key parameter in such analyses is a good estimate of the relationship between stress and permeability. Based on available laboratory and field data, it was found that the permeability of fractured rock masses tends to be most sensitive to stress changes at shallow depth (low stress) and in areas of low in-situ permeability. In highly permeable, fractured rock sections, fluid flow may take place in clusters of connected fractures which are locked open as a result of previous shear dislocation or partial cementation of hard mineral filling. Such locked-open fractures tend to be relatively insensitive to stress and may therefore be conductive at great depths. Because of the great variability of HM properties in fractured rock, and the difficulties in using laboratory data for deriving in-situ material properties, the HM properties of fractured rock masses are best characterized in situ.

Résumé

Ce papier passe en revue les couplages hydromécaniques (HM) dans les roches fracturées, en mettant tout spécialement l'accent sur les interactions HM résultant de ou directement connectées à des activités humaines. Au début des années soixante, on a commencé à vraiment s'intéresser au couplage entre les processus hydrauliques et mécaniques dans les roches fracturées. Une série d'évènements, dont des ruptures de barrages, des glissements de terrain et des séismes induits par des injections, a été envisagée comme la conséquence d'interactions HM. En outre, l'émergence de la technologie des ordinateurs dans les années soixante-dix a rendu possible l'intégration de processus non linéaires tels que le couplage contrainte–perméabilité et la rupture d'un massif rocheux dans l'analyse HM couplée. L'analyse HM couplée est couramment réalisée dans de nombreuses applications en géologie de l'ingénieur. Un paramètre clé dans une telle analyse est une bonne estimation de la relation entre la contrainte et la perméabilité. À partir de données disponibles de laboratoire et de terrain, on a trouvé que la perméabilité de massifs de roches fracturées tend à être plus sensible aux changements de contrainte à faible profondeur (faible contrainte) et dans les régions de faible perméabilité in situ. Dans les sections très perméables des roches fracturées, l'écoulement du fluide peut prendre place dans des zones de fractures connectées qui sont maintenues ouvertes du fait de la dislocation initiale par cisaillement ou de la cimentation partielle du remplissage minéral induré. De telles fractures maintenues ouvertes tendent à être relativement insensibles à la contrainte et peuvent alors être conductives à grandes profondeurs. Cependant, ce papier met en avant la grande variabilité des propriétés HM en roches fracturées et les difficultés à utiliser les données de laboratoire pour en déduire les propriétés in situ du matériau. À cause des difficultés telles que les propriétés dépendant de la dimension, des désordres dans l'échantillon et un échantillonnage non représentatif, les propriétés HM des massifs de roches fracturées sont mieux caractérisées in situ.

Resumen

El presente artículo revisa los acoplamientos hidromecánicos en rocas fracturadas, haciendo énfasis en las interacciones hidromecánicas resultantes o directamente relacionadas con las actividades antrópicas. A comienzos de los años sesenta, el acoplamiento entre los procesos hidráulicos y los mecánicos en rocas fracturadas comenzó a ser tenido en cuenta de forma generalizada. Una serie de sucesos, incluyendo roturas de presas, deslizamientos de terreno y terremotos inducidos por inyección, fueron considerados como una consecuencia de las interacciones hidromecánicas. Después, la introducción de los computadores hacia los setenta permitió la integración de procesos no-lineales, tales como el acoplamiento esfuerzos-permeabilidad y el fallo de la matriz rocosa, en análisis hidromecánicos acoplados. Este tipo de análisis se aplica actualmente a muchos estudios de ingeniería geológica. Un parámetro clave para ello es la correcta estimación de la relación entre esfuerzos y permeabilidad. Basándose en datos disponibles de laboratorio y de campo, se ha deducido que la permeabilidad de las rocas fracturadas es fundamentalmente sensible a cambios de la tensión a profundidades someras (baja tensión) y en áreas de permeabilidad baja. En secciones de rocas fracturadas muy permeables, el flujo de fluidos puede tener lugar en grupos de fracturas interconectadas que están abiertas como resultado de cizallas previas por dislocación o por cementación parcial del relleno mineral. Estas fracturas abiertas tienden a ser relativamente insensibles a la tensión y pueden por tanto ser conductivas a grandes profundidades. Sin embargo, este artículo pretende destacar la gran variabilidad de las propiedades hidromecánicas en rocas fracturadas, y las dificultades asociadas al uso de datos de laboratorio para estimar propiedades de campo de los materiales. Debido a problemas como la dependencia de las variables con el tamaño, las alteraciones de muestras y el muestreo no representativo, las propiedades hidromecánicas de las rocas fracturadas se caracterizan mejor in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2.
Fig. 3.
Fig. 4a–d.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9a–c.
Fig. 10.
Fig. 11.
Fig. 12a, b.
Fig. 13.
Fig. 14.
Fig. 15a, b.
Fig. 16a, b.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20a, b.
Fig. 21.
Fig. 22a–c.
Fig. 23.

Similar content being viewed by others

References

  • Aki K, Fehler M, Aamodt RL, Albright JN, Potter RM, Pearson CM, Tester JW (1982) Interpretation of sesimic data from hydraulic fracturing experiments at the Fenton, Hill New Mexico, Hot Dry Rock Geothermal site. J Geophys Res 87:936–951

    Google Scholar 

  • Alm P (1999) Hydro-mechanical behavior of a pressurized single fracture: an in situ experiment. PhD Thesis, Chalmers University, Sweden

    Google Scholar 

  • Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in overconsolidated clays. A case study. Hydrogeol J (in press) DOI 10.1007/s10040-002-0245-1

  • Apps J, Tsang C-F (1996) Preface. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California

  • Bäckblom G, Martin CD (1999) Recent experiments in hard rock to study the excavation response: Implication of the performance of a nuclear waste geological repository. Tunnel Underground Space Technol 14:377–394

    Article  Google Scholar 

  • Bai M, Feng F, Elsworth D, Roegiers J-C (1999) Analysis of stress-dependent permeability in nonorthogonal flow and deformation. Rock Mech Rock Eng 32:195–219

    Article  Google Scholar 

  • Bandis S, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Mining Sci Geomech Abstr 20:249–268

    Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina (1960) Basic concepts in the theory of homogenous liquids in fissured rocks. Prikl Mat Mekh 24:852–864

    Google Scholar 

  • Baria R, Baumgärtner J, Rummel F, Pine RJ, Sato Y (1999a) HDR/HWR reservoirs: concepts, understanding and creation. Geothermics 28:533–552

    Article  Google Scholar 

  • Baria R, Baumgärtner J, Gérard A, Jung R, Garnish J (1999b) European HDR research programme at Soultz-sous-Forets (France) 1987–1996. Geothermics 28:655–669

    Article  Google Scholar 

  • Barton NR, Choubey (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Google Scholar 

  • Barton NR, Bakhtar K (1982) Rock joint description and modeling for the hydrothermomechanical design of nuclear waste repositories. TerraTek Engineering, Salt Lake City, Utah, Tech Rep 83-10

  • Barton NR, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Mining Sci Geomech Abstr 22:121–140

    Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  • Barton CA, Hickman SH, Morin R, Zooback MD (1998) Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal fields. Soc Petrol Eng SPE Pap 47371

  • Bernabe Y (1986) The effective pressure law for permeability in Chelmford granite and Barre granite. Int J Rock Mech Mining Sci Geomech Abstr 23:267–275

    Google Scholar 

  • Biot MA (1941) A general theory of three dimensional consolidation. J Appl Phys 12:155–164

    Google Scholar 

  • Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185

    CAS  Google Scholar 

  • Biot MA (1956) General solutions of the equation of elasticity and consolidation for a porous material. J Appl Phys 27:240–253

    Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Google Scholar 

  • Boitnott GN (1991) Mechanical and transport properties of joints. PhD Thesis, Columbia University, New York

  • Börgesson L, Pusch R, Fedriksson A, Hökmark H, Karnland O, Sandén S (1992) Final report of the zones disturbed by blasting and stress release. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, Stripa Proj Tech Rep 92-08

  • Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236

    Google Scholar 

  • Brasier FM, Kobelsky BJ (1996) Injection of industrial wastes in the United States. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 1–8

  • Brower KR, Morrow NR (1985) Fluid flow in cracks as related to low permeability gas sands. Soc Petrol Eng J 25:191–201

    Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92:1337–1347

    Google Scholar 

  • Brown DW (1993) Recent flow testing of the HDR reservoir at Fenton Hill, New Mexico. Geotherm Resour Council Bull 22:208–214

    Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 91:4939–4948

    Google Scholar 

  • Bruno MS, Srinivasa MM, Danyluk PM, Hejl KA, Anduisa JP (1998) Fracture injection of solid oilfield wastes at the West Coyote field in California. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47371

  • Byerlee JD (1978) Friction in rocks. J Pure Appl Geophys 73:615–626

    Google Scholar 

  • Carder DS (1945) Seismic investigation in the Boulder Dam area, 1940–1945, and influence of reservoir loading on earthquake activity. Bull Seismol Soc Am 35:175–192

    Google Scholar 

  • Carlsson A, Olsson T (1977) Hydraulic properties of the Swedish crystalline rocks—hydraulic conductivity and its relationship to depth. Bull Geol Inst Univ Uppsala 7:71–84

    Google Scholar 

  • Carlsson A, Olsson T (1979) Hydraulic conductivity and its stress dependency. In: Proc Organization Econ Coop Dev-Nucl Energy Agency OECD-NEA Int Atom Energy Agency IAEA Worksh Low-flow, Low-permeability Measurements in Largely Impermeable Rocks, 19–20 March, Paris. OECD, Paris, pp 249–260

  • Carlsson A, Olsson T (1986) Large scale in-situ test on stress and water flow relationships in fractured rock. Swedish State Power Board Tech Rep

  • Chen H-Y, Teufel LW (1997) Coupling fluid flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs. Soc Petrol Eng SPE Pap 47371

  • Clark JB (1949) A hydraulic process for increasing the productivity of wells. Petrol Trans AIME 186:1–8

    Google Scholar 

  • Cypser AC, Davis SD (1998) Induced seismicity and the potential for liability under U.S. law. Tectonophysics 289:239–255

    Article  Google Scholar 

  • Davies JP, Davies JK (1999) Stress-dependent permeability: characterization and modeling. Soc Petrol Eng SPE Pap 56813

    PubMed  Google Scholar 

  • Detournay E, Cheng H-D (1993) Fundamentals of poroelasticity. In: Hudson JA (ed) Comprehensive rock engineering. Pergamon, Oxford, vol 1, pp 395–412

  • Doe TW (1999) Evaluating fracture network geometry from hydraulic field data at underground test facilities. In: Faybishenko B (ed) Proc Int Symp Dynamics of Fluids in Fractured Rocks. Lawrence Berkeley National Laboratory, Berkeley, California, pp 65–70

  • DOE (1999) Carbon sequestration research and development. In: Reichle D et al. (eds) US Dept Energy, Rep DOE/SC/FE-1, Washington, DC

  • Dusseault M (1997) Geomechanics in oil and gas exploration and drilling. In: Program 1st Asian Rock Mechanics Symp, 13–15 October, Seoul, pp 100–114

  • Dusseault MB, Bilak RA, Bruno MS, Rothenburg L (1996) Disposal of granular solid wastes in the western Canadian sedimentary basic by slurry injection. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 725–742

  • Dyke C (1995) How sensitive is natural fracture permeability at depth to variation of in effective stress? In: Myer L, Cook NGW, Goodman D, Tsang C-F (eds) Fracture and jointed rock masses. Balkema, Rotterdam, pp 81–88

  • Eliasson TM, Sundquist U, Wallroth T (1990) Circulation experiments in 1989 at Fjällbacka HDR test site. Dept Geology, Chalmers University, Rep Fj-10

  • Elliot GM, Brown ET, Boodt PI, Hudson JA (1985) Hydromechanical behavior of joint in the Carmenelis granite, SW England. In: Stephansson O (ed) Proc Int Symp Fundamentals of Rock Joints, 15–20 September, Börkliden, Sweden, Centek, Luleå, Sweden, pp 249–258

  • Emsley S, Olsson O, Stenberg L, Alheid H-J, Fall S (1997) ZEDEX—a study of damage and disturbance from tunnel excavation by blasting and tunnel boring. Swedish Nuclear Fuel Waste Management Co (SKB), Stockholm, Tech Rep 97-30

  • Engelder T, Scholz CH (1981) Fluid flow along very smooth joints at effective pressures up to 200 megapascals. In: Carter NL (ed) Mechanical behavior of crustal rocks. Am Geophys Union, Monograph 24, Washington, DC, pp 147–152

  • Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Mining Sci Geomech Abstr 36:641–650

    Article  Google Scholar 

  • Evans D (1966) The Denver area earthquakes and the Rocky Mountain Arsenal Disposal Well. Mtn Geol 3:23–36

    Google Scholar 

  • Evans KF, Kohl T, Hopkirk RJ, Rybach L (1992) Modeling of energy production from hot dry rock systems. Proj Rep Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland

  • Evans KF, Cornet FH, Hashida T, Hayashi K, Ito T, Matsuki K, Wallroth T (1999) Stress and rock mechanics issues of relevance to HDR/WDR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28:455–474

    Article  Google Scholar 

  • Fairhurst C (1964) Measurements of in situ rock stresses with particular reference to hydraulic fracturing. Rock Mech Eng Geol 2:129–147

    Google Scholar 

  • Ferrill D, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. Geol Soc Am, GSA Today, May 1999

  • Gale J (1975) A numerical, field and laboratory study of flow in rock with deformable fractures. PhD Thesis, University of California, Berkeley

  • Galloway D, Jones DR, Ingebritsen SE (eds) (1999) Land subsidence in the United States. US Geol Surv Circ 182

  • Gambolati GP, Freeze A (1973) Mathematical simulation of the subsidence of Venice. I. Theory. Water Resour Res 9:721–733

    Google Scholar 

  • Gambolati G, Ricceri G, Bertoni W, Brighenti G, Vuillermin E (1991) Mathematical simulation of the subsidence of Ravenna. Water Resour Res 27:2899–2918

    Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Mining Sci Geomech Abstr 15:249–257

    Google Scholar 

  • Gaucher E, Cornet FH, Bernard P (1998) Induced seismicity analysis for structure identification and stress field determination. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47324(1), pp 545–554

  • Geertsma J (1957) The effect of fluid-pressure decline on volumetric changes of porous rocks. Trans AIME 210:331–339

    Google Scholar 

  • Geertsma J (1966) Problems of rock mechanics in petroleum production engineering. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol I, pp 585–594

  • Geertsma J (1973) Land subsidence above compacting oil and gas reservoirs. J Petrol Tech 25:734–744

    Google Scholar 

  • Geertsma J, Deklerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol Tech 21:1571–1581

    Google Scholar 

  • Gerrard CM (1982) Elastic models of rock masses having one, two and three sets of joints. Int J Rock Mech Mining Sci Geomech Abstr 19:15–23

    Google Scholar 

  • Ghaboussi J, Wison EL (1973) Flow of compressible fluids in porous elastic media. Int J Numer Methods Eng 5:419–442

    Google Scholar 

  • Goodman RE (1970) Deformability of joints. In: Proc Symp Determination of the In-situ Modulus of Deformation of Rock, 2–7 February, Denver, Colorado. ASTM Spec Tech Publ 477, pp 174–196

  • Goodman RE (1974) The mechanical properties of joints. In: Proc 3rd Int Congr International Society of Rock Mechanics, 1–7 September 1974, Denver, Colorado. National Academy of Sciences, Washington, DC, vol I, pp 127–140

  • Goodman RE (1976) Methods of geological engineering in discontinuous rock. West Publishing, New York

  • Gupta HK (1992) Reservoir induced earthquakes. Elsevier, New York

  • Gutierrez M, Lewis RW (1998) The role of geomechanics in reservoir simulation. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47392, pp 439–448

  • Gutierrez M, Barton N, Makurat A (1995) Compaction and subsidence in North Sea hydrocarbon fields. In: Yoshinaka R, Kikuchi K (eds) Proc Int Worksh Rock Foundation, 30 September 1995, Tokyo, Japan. Balkema, Rotterdam, pp 57–64

  • Habib P (1987) The Malpasset dam failure. Eng Geol 24:331-338

    Google Scholar 

  • Haimson BC, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Petrol Eng J Sept:310–318

    Google Scholar 

  • Hainey BW, Keck RG, Smith MB, Lynch KW, Barth JW (1997) On-site disposal of oilfield waste solids in Wilmington Field, Long Beach Unite, CA. Soc Petrol Eng SPE Pap 47371

  • Hakami E (1995) Aperture distribution of rock fractures. PhD Thesis, Royal Institute of Technology, Sweden

  • Harpalani S, Chen G (1995) Estimation of changes in fracture porosity of coal with gas emission. Fuel 74:1491–1498

    Article  CAS  Google Scholar 

  • Harpalani S, Schraufnagel RA (1990) Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel 199:551–556

    Google Scholar 

  • Hayashi K, Abé H (1989) Evaluation of hydraulic properties of the artificial subsurface system in Higashihachimantai geothermal model field. J Geotherm Res Soc Jpn 11:203–215

    Google Scholar 

  • Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The Denver earthquakes. Science 161:1301–1310

    Google Scholar 

  • Heiland J (2003) Laboratory testing of coupled hydro-mechanical processes during rock deformation. Hydrogeol J (in press) DOI 10.1007/s10040-002-0236-2

  • Henkel H (2002) The Bjökö geothermal energy project. Norges Geol Undersök Bull 439:45–50

    Google Scholar 

  • Hsieh PA, Bredehoeft JD (1981) A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J Geophys Res 86:903–925

    Google Scholar 

  • Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. J Petrol Tech 9:153–168

    Google Scholar 

  • Ito T, Zoback MD (2000) Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole. Geophys Res Lett 27:1045–1048

    Article  Google Scholar 

  • Iwai K (1976) Fundamental studies of fluid flow through a single fracture. PhD Thesis, University of California, Berkeley

  • Iwano M (1995) Hydromechanical characteristics of a single rock joint. PhD Thesis, Massachusetts Institute of Technology

  • Jacob CE (1940) On the flow of ground water in a elastic artesian aquifer. Trans Am Geophys Union 22:783–787

    Google Scholar 

  • Jacob CE (1950) Flow of groundwater. In: Engineering hydraulics. Wiley, New York, pp 321–386

  • Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Mining Sci 39:409–427

    Article  Google Scholar 

  • Jones FO Jr (1975) A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J Petrol Tech 27:21–27

    CAS  Google Scholar 

  • Jones FO, Ovens WW (1980) A laboratory study of low permeability gas sands. J Petrol Eng 32:1631–1640

    Google Scholar 

  • Jung R (1989) Hydraulic in situ investigation of an artificial fracture in the Falkenberg granite. Int J Rock Mech Mining Sci Geomech Abstr 26:301–308

    Google Scholar 

  • Jupe AJ, Green ASP, Wallroth (1992) Induced microseismicity and reservoir growth at the Fjällbacka Hot Dry Rock Project, Sweden. Int J Rock Mech Mining Sci Geomech Abstr 29:343–354

    Google Scholar 

  • Kilmer NH, Morrow NR, Pitman JK (1987) Pressure sensitivity of low permeability sandstones. J Petrol Sci Eng 1:65–81

    Google Scholar 

  • Koutsabeloulis NC, Hope SA (1998) "Coupled" stress/fluid/thermal multi-phase reservoir simulation studies incorporating rock mechanics. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47392, pp 449–454

  • Kranz RL, Frankel AD, Engelder T, Scholz CH (1979) The permeability of whole and jointed barre granite. Int J Rock Mech Mining Sci Geomech Abstr 16:225–234

    Google Scholar 

  • Lee C-I, Chang K-M (1995) Analysis of permeability change and groundwater flow around underground oil storage cavern in Korea. In: Fujii T (ed) Proc 8th Int Congr Rock Mechanics, 25–29 September 1995, Tokyo. Balkema, Rotterdam, pp 779–782

  • Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, New York

  • Lewis RW, Sukirman Y (1993) Finite element modeling of three-phase flow in deforming saturated oil reservoirs. Int J Numer Anal Methods Geomech 17:577–598

    Google Scholar 

  • Lewis RW, Pao WKS, Makurat A (2003) Fully coupled modeling of seabed subsidence and reservoir compaction of North Sea oil fields. Hydrogeol J (in press) DOI 10.1007/s10040-002-0239-z

  • Liu J, Elsworth D (1997) Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels. Int J Rock Mech Mining Sci 34:1139–1152

    Article  Google Scholar 

  • Liu J, Elsworth D, Brady BH (1999) Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int J Rock Mech Mining Sci 36:581–596

    Article  Google Scholar 

  • Londe P (1987) The Malpasset dam failure. Eng Geol 24:295–329

    Google Scholar 

  • Londe P, Sabarly F (1966) La distribution des perméabilités dans la fondation des barrages voûtés en fonction du champ de contrainte. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol II, pp 517–522

  • Louis C, Maini Y (1970) Determination of in situ hydraulic parameters in jointed rock. In: Proc 2nd Int Congr Rock Mechanics, 21–26 September 1970, Belgrade. Inst Dev Water Resour, Belgrade, vol I, pp 235–245

  • Louis C, Dessenne J-L, Feuga B (1977) Interaction between water flow phenomena and the mechanical behavior of soil or rock masses. In: Gudehus G (ed) Finite elements in geomechanics. Wiley, New York, pp 479–511

  • Makurat A, Barton N, Rad NS (1990) Joint conductivity variation due to normal and shear deformation. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 535–540

  • Martin CD, Davison CC, Kozak ET (1990) Characterizing normal stiffness and hydraulic conductivity of a major shear zone in granite. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 549–556

  • Meinzer OE (1928) Compressibility and elasticity of artesian aquifers. Econ Geol 23:263–291

    Google Scholar 

  • Myer LR (1991) Hydromechanical and seismic properties of fractures. In: Wittke W (ed) Proc 7th Int Congr Rock Mechanics, Aachen, Germany. Balkema, Rotterdam, pp 397–404

  • Nagelhout ACG, Roest JPA (1997) Investigating fault slip in a model of underground gas storage facility. Int J Rock Mech Mining Sci Geomech Abstr 34, Pap no 212

    Google Scholar 

  • Nakatsuka K (1999) Field characterization for HDR/WDR: a review. Geothermics 28:519–531

    Article  Google Scholar 

  • National Research Council (1996) Rock Fractures and fluid flow. National Academy Press, Washington, DC

  • Neuzil CE (1986) Ground water flow in low-permeability environments. Water Resour Res 22:1163–1195

    Google Scholar 

  • Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J (in press) DOI 10.1007/s10040-002-0230-8>

  • Neuzil CE, Tracy JV(1981) Flow through fractures. Water Resour Res 17:191–199

    Google Scholar 

  • Nicholson C, Wesson RL (1992) Triggered earthquakes and deep well activities. Pure Appl Geophys 139:561–578

    Google Scholar 

  • Nolte KG (1991) Fracturing-pressure analysis for nonideal behavior. J Petrol Tech Feb 1991:210–218

    Google Scholar 

  • Noorishad J (1971) Finite element analysis of rock mass behavior under coupled action of body forces, fluid flow, and external loads. PhD Thesis, University of California, Berkeley

  • Noorishad J, Ayatollahi MS, Witherspoon PA (1982) A finite element method for coupled stress and fluid flow analysis of fractured rocks. Int J Rock Mech Mining Sci Geomech Abstr 19:185–193

    Google Scholar 

  • Noorishad J, Tsang C-F, Witherspoon PA (1992) Theoretical and field studies of coupled hydromechanical behavior of fracture rocks. 1. Development and verification of a numerical simulator. Int J Rock Mech Mining Sci Geomech Abstr 29:401–409

    Google Scholar 

  • Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76:6414–6419

    Google Scholar 

  • Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22:96–108

    Google Scholar 

  • Olsson O (1992) Site characterization and validation—final report: Stripa Project. Swedish Nuclear Fuel Waste Management Co, Stockholm, Rep TR 92-22

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Mining Sci 38:317–329

    Article  Google Scholar 

  • Osoiro JG, Chen H-Y, Teufel LW, Schaffer S (1998) A two-domain, 3D, fully coupled fluid flow/geomechanical simulation model for reservoirs with stress sensitive mechanical and fluid-flow properties. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47397, pp 455–464

  • Patton FD (1966) Multiple modes of shear failure in rock. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol I, pp 509–513

  • Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Petrol Tech Sept 1961:937–949

    Google Scholar 

  • Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Mining Sci 21:249–263

    Google Scholar 

  • Pratt WE, Johnson DW (1926) Local subsidence of the Goose Creek oil field. J Geol 34:577–590

    Google Scholar 

  • Pratt HR, Swolfs HS, Brace WF, Black AD, Handin JW (1977) Elastic and transport properties of an in situ jointed granite. Int J Rock Mech Mining Sci Geomech Abstr 14:35–45

    Google Scholar 

  • Pyrak-Nolte L, Myer LJ, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock. In: Herget G, Vongpaisal S (eds) Proc 6th Congr International Society of Rock Mechanics, Montreal. Balkema, Rotterdam, vol 1, pp 225–231

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Mining Sci Geomech Abstr 22:251–261

    Google Scholar 

  • Read RS, Chandler NA (1999) Excavation damage and stability studies at the URL. In: Amadei B, Kranz RL, Scott GA, Smeallie PH (eds) Proc 37th US Rock Mechanics Symp, 6–9 June 1999, Vail, Colorado. Balkema, Rotterdam, vol 2, pp 861–868

  • Reed AC, Mathews JL, Bruno MS, Olmstead SE (2001) Chevron safely disposes one million barrels of NORM in Louisiana through slurry fracture injection. Soc Petrol Eng SPE Pap 47371

  • Rejeb A (1996) Mathematical simulation of coupled THM processes of Fanay-Augéres field test by distinct element and discrete finite element methods. In: Stephansson O, Jing L, Tsang C-F (eds) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, Amsterdam, pp 341–369

  • Rhén I, Gustafson G, Stanford R, Wikberg P (1997) Äspö HRL—geoscientific evaluation 1997-5: models based on site characterization 1986-1995. Swedish Nuclear Fuel Waste Management Co (SKB) Tech Rep 97-06

  • Rice JR, Cleary MP (1976) Some basic stress diffusion solutions of fluid saturation elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241

    Google Scholar 

  • Richards HG, Parker RH, Green ASP, Jones RH, Nicholls JDM, Nichol DAC, Randall MM, Stewart RC, Willis-Richards J (1994) The performance characteristics of the experimental Hot Dry Rock Geothermal Reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics 23:73–109

    Google Scholar 

  • Rutqvist J (1995a) Coupled stress-flow properties of rock joints from hydraulic field testing. PhD Thesis, Royal Institute of Technology, Sweden

  • Rutqvist J (1995b) Determination of hydraulic normal stiffness of fractures in hard rock from hydraulic well testing. Int J Rock Mech Mining Sci Geomech Abstr 32:513–523

    Article  Google Scholar 

  • Rutqvist (1995c) Hydraulic pulse testing of single fractures in porous and deformable rocks. Q J Eng Geol 29:181–192

    Google Scholar 

  • Rutqvist J, Tsang C-F (2002) Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. J Contaminant Hydrol (in press)

  • Rutqvist J, Tsang C-F, Ekman D, Stephansson O (1997) Evaluation of in situ hydromechanical properties of rock fractures at Laxemar in Sweden. In: Lee H-K, Yang H-S, Chung S-K (eds) Proc 1st Asian Rock Mechanics Symp ARMS 97, 13–15 October 1997, Seoul, Korea. Balkema, Rotterdam, pp 619–624

  • Rutqvist J, Tsang C-F, Stephansson O (1998) Determination of fracture storativity in hard rocks using high pressure testing. Water Resour Res 34:2551–2560

    Google Scholar 

  • Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Mining Sci 39:429–442

    Article  Google Scholar 

  • Sandhu RS, Wilson EL (1969) Finite-element analysis of seepage in elastic media. J Eng Mech Div ASCE 95:641–652

    Google Scholar 

  • Sasaki S (1998) Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics 289:171–188

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, Toronto

  • Schmidt JH, Friar WL, Bill ML, Cooper GD (1999) Large scale injection of North Slope drilling cuttings. Soc Petrol Eng SPE Pap 52738

  • Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press, New York

  • Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17:942–946

    Article  Google Scholar 

  • Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289:17–128

    Article  Google Scholar 

  • Simpson DW, Leith WS, Scholz CH (1988) Two types of reservoir-induced seismicity. Bull Seismol Soc Am 78:2025–2040

    Google Scholar 

  • Snow DT (1965) A parallel plate model of fractured permeable media. PhD Thesis, University of California, Berkeley

  • Snow DT (1968) Rock fracture spacings, openings, and porosities. J Soil Mech Found Div ASCE 73-91

  • Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5:1273–1289

    Google Scholar 

  • Souley M, Homand F, Pepa S, Hoxha D (2001) Damage-induced permeability changes in granite: a case example at the URL in Canada. Int J Rock Mech Mining Sci 38:297–310

    Article  Google Scholar 

  • Stephansson O, Jing L, Tsang C F (eds) (1996) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, Amsterdam

  • Stietel A, Millard A, Treille E, Vuillod E, Thoravel A, Ababou R (1996) Continuum representation of coupled hydromechanical processes of fractured media. In: Stephansson O, Jing L, Tsang C-F (eds) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, Amsterdam, pp 135–164

  • Stowel JFW, Laubch SE, Olson JE (2001) Effect of modern state of stress on flow-controlling fractures: a misleading paradigm in need of revision. In: Elsworth D, Tinucci JP, Heasley KA (eds) Proc 38th US Rock Mechanics Symp, 7–10 July 2001, Washington, DC. Balkema, Rotterdam, vol I, pp 691–697

  • Sugihara K, Matsu H, Sato T (1999) In situ experiments on rock stress conditions and excavation disturbance in JNC's geoscientific research program in Japan. In: Saeb S, Francke C (eds) Proc Int Worksh Rock Mechanics of Nuclear Waste Repositories, 5–6 June, Veil, Colorado, pp 159–183

  • Sutton S, Soley R, Jeffery C, Chackrabarty C, McLeod R (1996) Cross hole hydraulic testing between deep boreholes 2 and 4 at Sellafield. European Commission, Brussels, Nuclear Sci Technol Topical Rep EUR 16967

  • Swan G (1983) Determination of stiffness and other properties from roughness measurements. Rock Mech Rock Eng 16:19–38

    Google Scholar 

  • Takahashi M, Koide H, Xue Z-Q (1995) Correlation between permeability and deformational characteristics on the Shirahama sandstone and Inada granite. In: Fujii T (ed) Proc 8th Int Congr Rock Mechanics, 25–29 September 1995, Tokyo. Balkema, Rotterdam, pp 417–420

  • Talbot CJ, Sirat M (2001) Stress control of hydraulic conductivity in fractured-saturated Swedish bedrock. Eng Geol 61:145–153

    Article  Google Scholar 

  • Terzaghi K (1923) Die Berechnung der Durchlässigkeitziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad Wissensch Wien Sitzungsber Math-naturwissensch Klasse IIa 142(3/4), pp 125–138

  • Teufel LW, Farrel HE (1995) Interrelationship between in situ stress, natural fractures, and reservoir permeability anisotropy—A case study of the Ekofisk Field, North Sea. In: Myer L, Cook NGW, Goodman D, Tsang C-F (eds) Fracture and jointed rock masses. Balkema, Rotterdam, pp 573–578

  • Theis CV (1935) The relationship between the lowering of the piesometric surface and rate and duration of the discharge of a well using groundwater storage. Trans Am Geophys Union 2:519–524

    Google Scholar 

  • Thury M, Bossart P (1999) The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng Geol 52:347–359

    Article  Google Scholar 

  • Tsang C-F (1987) Introduction to coupled processes. In: Tsang C-F (ed) Coupled processes associated with nuclear waste repositories. Academic Press, Orlando, pp 1–6

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86:9287–9298

    Google Scholar 

  • Van-Golf Racht TD (1982) Fundamentals of fractured reservoir engineering. Elsevier, Amsterdam

  • Verruijt (1969) Elastic storage of aquifers. In: DeWiest RJM (ed) Flow through porous media. Academic Press, New York, pp 331–376

  • Walsh JB (1965) The effect of cracks on the compressibility of rock. J Geophys Res 70:381–389

    Google Scholar 

  • Walsh JB (1981) Effects of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Mining Sci Geomech Abstr 18:429–435

    Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, 287 p

  • Wang JSY, Elsworth D (1999) Permeability changes induced by excavation in fractured tuff. In: Amadei B, Kranz RL, Scott GA, Smeallie PH (eds) Proc 37th US Rock Mechanics Symp, 6–9 June 1999, Vail, Colorado. Balkema, Rotterdam, vol 2, pp 751–758

  • Wang J-A, Park HD (2002) Fluid permeability of sedimentary rocks in a complete stress-strain process. Eng Geol 63:291–300

    Article  Google Scholar 

  • Wang J, Cook P, Trautz R, Flexser S, Hu Q, Salve R, Hudson D, Conrad M, Tsang Y, Williams K, Soll W, Turin J (2001) In-situ field testing of processes ANL-NBS-HS-000005 REV01. Bechtel SAIC Co, Las Vegas, Nevada

  • Wei Z-Q, Hudson JA (1988) Permeability of jointed rock masses. In: Romana M (ed) Rock mechanics and power plants. Balkema, Rotterdam, pp 613–626

  • Withers RJ, Perkins TK, Keck RG (1996) A field demonstration of hydraulic fracturing for solid waste disposal. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 705–724

  • Witherspoon PA (2000) The Stripa project. Int J Rock Mech Mining Sci 37:385–396

    Article  Google Scholar 

  • Witherspoon PA, Amick CH, Gale JE, Iwai K (1979) Observations of a potential size effect in experimental determination of the hydraulic properties of fractures. Water Resour Res 15:1142–1146

    Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Google Scholar 

  • Wladis D, Jönsson P, Wallroth T (1997) Regional characterization of hydraulic properties or rock using well test data. Swedish Nuclear Fuel Waste Management Co (SKB) Tech Rep 97-29

  • Xiao HT, Xu HY (2000) In situ permeability measurements to establish the influence of slice mining on floor rock. Int J Rock Mech Mining Sci 37:855–860

    Article  Google Scholar 

  • Yoshinaka R, Yoshida J, Arai H, Arisaka S (1993) Scale effects on shear and deformability of rock joints. In: Pinto da Chunha A (ed) Proc Symp Scale Effects in Rock Masses 93, 25 June 1993, Lisbon, Portugal. Balkema, Rotterdam, pp 143–149

  • Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the Crarnmenellis granite. Q J Eng Geol 25:279–290

    Google Scholar 

  • Zienkiewics OC, Pande GN (1977) Time-dependent multilaminate model of rocks-a numerical study of deformation and failure of rock masses. Numer Anal Methods Geomech 1:219–247

    Google Scholar 

  • Zoback MD, Byerlee JD (1975) The effect of microcrack dilatancy on the permeability of westerly granite. J Geophys Res 80:752–755

    Google Scholar 

Download references

Acknowledgements

Technical review and comments by Dr. Christopher E. Neuzil, US Geological Survey, Dr. Chin-Fu Tsang, Lawrence Berkeley National Laboratory, and Tech. Lic. Ki-Bok Min, Royal Institute of Technology, Sweden are much appreciated. The following organizations are gratefully acknowledged for their financial support: the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biological Sciences, of the US Department of Energy, under contract no. DE-AC03-76-SF00098; the DECOVALEX Project through the Swedish Nuclear Power Inspectorate; and the European Commission through the BENCHPAR project under contract FIKW-CT-2000-00066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonny Rutqvist.

Appendix

Appendix

Abbreviations

Most symbols are defined the first time they occur. The following list contains an explanation of the symbols that need further explanation and symbols that are most frequently used. Boldface letters represent matrix or vector quantities, and scalars are shown in italic.

A :

Area (m2)

b :

Physical fracture aperture (m)

b E :

Barton et al.'s (1985) "real" physical aperture (Eq. 42) (m)

b h :

Hydraulic conducting aperture (Eq. 26) (m)

C :

Flow geometry constant (=ρ f gw/12μ f for parallel flow, Eq. 13) (-)

\( {\bf{\hat C}}_{{\bf{uu}}} \) :

FEM incremental stiffness matrix (Pa)

\( {\bf{\hat C}}_{{\bf{uP}}} \) :

FEM coupling matrix (-)

\( {\bf{\hat C}}_{{\bf{Pu}}} \) :

\( {\bf{\hat C}}_{{\bf{uP}}}^{tr} \)

\( {\bf{\hat C}}_{{\bf{PP}}} \) :

FEM fluid storage matrix

D :

Tensor of elastic constants (Pa)

E :

Young's modulus (Pa)

f :

A friction factor for fluid flow in a rough fracture (Eq. 36) (-)

F :

Mechanical force vector (={Fx, Fy, Fz}tr in Cartesian coordinates)

\( {\bf{\hat F}} \) :

FEM nodal force vector

g :

Acceleration of gravity (m s−2)

G :

Shear modulus (Pa)

h :

Total hydraulic head (=p/ρ f g+z) (m)

I :

Identity tensor (all components 0 except diagonals which are 1) (-)

JCS :

Joint compressive strength (measured by a hammer rebound test) (Pa)

JRC :

Joint roughness coefficient (a measure of fracture surface roughness) (-)

JRC mob :

Mobilized JRC (a function of shear displacement) (-)

k :

Permeability (m2)

k 0 :

Permeability at a reference stress (m2)

k n :

Fracture normal stiffness (Fig. 1e) (Pa m−1)

k ni :

Fracture normal stiffness at an initial effective stress (Fig. 4a) (Pa m−1)

k n0 :

Fracture normal stiffness at zero normal stress (Fig. 4a) (Pa m−1)

k s :

Fracture shear stiffness (Fig. 1f) (Pa)

k :

Permeability tensor (m2)

pp :

FEM incremental conductance matrix

K :

Drained bulk modulus (Pa)

K f :

Bulk modulus of pore fluid (Pa)

K′:

Modulus of drained uniaxial (or vertical) porous medium deformation (Pa)

K s :

Bulk modulus of solid grains (Pa)

M :

Biot's effective isothermal storage constant (Eqs. 9 and 24) (Pa)

p :

Fluid pressure (Pa)

P :

Total isotropic pressure (=σ xx +σ yy +σ zz , compressive positive) (Pa)

P′ :

Effective isotropic pressure (=σ xx +σ yy +σ zz , compressive positive) (Pa)

\( {\bf{\hat p}} \) :

FEM vector of nodal fluid pressure (Pa)

Q :

Volume flow rate (m3 s−1)

Q f :

Volume flow rate per unit fracture width (m3 s−1)

\( {\bf{\hat Q}} \) :

Nodal flow rate vector (m3 s−1)

R :

Aspect ratio of an elliptical crack (=b c0/"crack length", Eq. 16) (-)

s :

Fracture spacing (m)

S, S f :

S fJacob storage coefficient or storativity (Eqs. 3 and 25) (-)

S s :

Jacob specific storage (Eq. 7) (m−1)

t :

Time (s)

tr :

See special symbols below

T :

Fluid transmissivity (m2 s−1)

T r :

Residual transmissivity at high compressive stress (Fig. 4b) (m2 s−1)

u :

Displacement (vector) [m]

\( {\bf{\hat u}} \) :

FEM nodal displacement vector

u n :

Fracture normal displacement (Fig. 4a) (m)

u s :

Fracture shear displacement (Fig. 4c) (m)

w :

Width of a fracture plane (m)

z :

z-coordinate or elevation (m)

Greek symbols

α :

Biot-Willis' coefficient (Eqs. 10 and 23) (-)

δ :

Fracture normal closure (Fig. 4a) (m)

δ max :

Maximum fracture normal closure (Fig. 4a) (m)

ε :

Total strain tensor (-)

ε v :

Volumetric strain (=εxxyyzz, positive for contraction) (-)

φ :

Porosity (-)

τ CK , τ W :

Flow tortuosity factors (Eqs. 21 and 46) (-)

μ f :

Dynamic fluid viscosity (Pa s)

ν :

Poisson's ratio (-)

ρ f :

Fluid density (kg m−3)

ρ m :

Average density of the mixture (kg m−3)

σ :

Total stress (compression positive) (Pa)

σ′:

Effective stress (compression positive, see Eq. 1) (Pa)

σ n :

Total fracture normal stress (Fig. 1d) (Pa)

σ n :

Effective fracture normal stress (Fig. 1d) (Pa)

σ ni :

Effective fracture normal stress at initial conditions (Fig. 4a) (Pa)

σ n0 :

A reference effective fracture normal stress in Eq. (31) (Pa)

σ m :

Total mean stress (=1/3(σ x +σ y +σ z ), compression positive) (Pa)

σ m :

Effective mean stress (=1/3(σ x +σ y +σ z ), compression positive) (Pa)

σ s :

Shear stress (Fig. 1c, f) (Pa)

σ sc Peak :

Peak shear stress (strength) (Fig. 4c) (Pa)

σ :

Macroscopic total stress tensor (Pa)

σ f :

Macroscopic total stress vector (normal and shear stress) for fractures (Pa)

σ′:

Macroscopic effective stress tensor (Pa)

ξ :

Fluid volumetric strain (=Δm f /ρ f0, positive for "gain" of fluid) (-)

Special symbols

A tr :

Transpose of a vector

\( \nabla \cdot {\bf{A}} \) :

Divergence of a vector (=div A)

A :

Gradient of a scalar (= grad A)

A :

Gradient of a vector

A:B :

Contracted product of two tensors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutqvist, J., Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal 11, 7–40 (2003). https://doi.org/10.1007/s10040-002-0241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-002-0241-5

Keywords

Navigation