Skip to main content

Advertisement

Log in

How can remote sensing contribute in groundwater modeling?

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitatively.

Résumé

L’évaluation, la modélisation et la gestion des ressources d’eau souterraine sont considérablement entravées par un manque de données, particulièrement dans les régions semi-arides et arides possédant peu d’infrastructures d’observation. Généralement, seul un nombre limité de points de mesure sont disponibles, alors que les modèles hydrogéologiques demandent des distributions spatiales et temporelles de données d’entrée et de calibration. Si de telles données ne sont pas disponibles, les modèles ne peuvent pas jouer leur rôle d’appui à la décision puisqu’ils sont notoirement de mauvaise résolution et incertains. De récentes avancées en télédétection constituent de nouvelles sources pour les données spatialement distribuées. Comme les entités utiles telles que les flux et les niveaux d’eau ou les transmissivités ne peuvent pas être observées directement par télédétection, il convient de trouver des moyens de relier les quantités observables aux données d’entrée nécessaires aux modèles. A travers des exemples au Botswana et en Chine, un aperçu des possibilités d’utilisation des observations issues de la télédétection en modélisation hydrogéologique est présenté. Les principales possibilités sont: (1) l’utilisation de données de télédétection pour créer une partie des données d’entrée spatialement distribuées d’un modèle, et (2) la contrainte des modèles lors de la calibration avec des données spatialement distribuées dérivées de la télédétection. Dans les deux cas, les modèles peuvent être conceptuellement et quantitativement améliorés.

Resumen

La evaluación, modelizado, y gestión de recursos de agua subterránea, se dificulta considerablemente por la falta de datos, especialmente en ambientes áridos y semi-áridos donde existe una infraestructura débil de vigilancia. En esto ambientes normalmente solo se cuenta con un número limitado de mediciones puntuales mientras que los modelos de agua subterránea necesitan distribuciones temporales y espaciales de datos de entrada y calibración. Si estos datos no están disponibles los modelos no pueden jugar su rol apropiado en el apoyo de decisiones ya que en estas circunstancias son bastante inciertos e indeterminados. Los desarrollos recientes en sensores remotos han abierto nuevas fuentes para datos con distribución espacial. Debido a que las entidades relevantes tal como flujos de agua, presiones o transmisividades no pueden observarse directamente mediante sensores remotos, tienen que encontrarse maneras para vincular las cantidades observables a datos de entrada que requiere el modelo. Se proporciona una revisión de las posibilidades de utilizar observaciones de sensores remotos en los modelos de agua subterránea apoyándose en ejemplos de Bostwana y China. Las dos posibilidades son: (1) uso de datos de sensores remotos para crear algunos de los parámetros de entrada distribuidos espacialmente para un modelo, y (2) restricción de modelos durante la calibración mediante datos distribuidos espacialmente obtenidos de sensores remotos. Para ambas posibilidades los modelos pueden mejorarse conceptual y cuantitativamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida AS, Frykman P (1994) Geostatistical modeling of Chalk properties in the Dan Field, Danish North Sea. In: JM Yarus, RL Chambers (eds) Stochastic modeling and geostatistics: AAPG computer applications in geology, no. 3. AAPG, Tulsa, OK

  • Amalvict M, Hinderer J, Makinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353

    Article  Google Scholar 

  • Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geophys Res Lett 32:L01402. DOI 10.1029/2004GL020948

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:L18405. DOI 10.1029/2005GL023574

  • Barnes CJ, Allison GB (1988) Tracing of water-movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100(1–3):143–176

    Article  Google Scholar 

  • Bastiaanssen W, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 213(1–4):198–212

    Article  Google Scholar 

  • Bastiaanssen W, Pelgrum H, J, Wang Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. J Hydrol 213(1–4):213–229

    Article  Google Scholar 

  • Bauer P, Gumbricht T, Kinzelbach W (2006a) A regional coupled surface water/ground water model of the Okavango Delta, Botswana. Water Res Res 42:W04403. DOI 10.1029/2005WR004234

  • Bauer P, Held R, Zimmermann S, Linn F, W Kinzelbach (2006b) Coupled flow and salinity transport modelling in semi-arid environments: the Shashe River Valley, Botswana. J Hydrol 316(1–4):163–183

    Article  Google Scholar 

  • Becker MW (2006) Potential for satellite remote sensing of ground water. Ground Water 44(2):306–318

    Article  Google Scholar 

  • Ben-Dor E, Goldshleger N, Braun O, Kindel B, Goetz AFH, Bonfil D, Margalit N, Binaymini Y, Karnieli A, Agassi M (2004) Monitoring infiltration rates in semiarid soils using airborne hyperspectral technology. Int J Remote Sens 25(13):2607–2624

    Article  Google Scholar 

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32 (16):L16401

    Google Scholar 

  • Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site. Phys Earth Planet Inter 106(3–4):353–369

    Article  Google Scholar 

  • Brunner P (2005) Sustainable Agriculture in the Yanqi Basin, China, PhD Thesis, ETH Zurich, Switzerland, http://www.e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss&nr=16210. Cited 29 October 2006

  • Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294(4):241–250

    Article  Google Scholar 

  • Brunner P, Li HT, Li WP, Kinzelbach W (2006) Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int J Remote Sens (in press)

  • Bufton JL, Garvin JB, Cavanaugh JF, Ramosizquierro L, Clem TD, Krabill WB (1991) Airborne LIDAR for profiling of surface topography. Opt Eng 30(1):72–78

    Article  Google Scholar 

  • Capilla JE, Rodrigo J, Gomez-Hernandez JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31(7):907–927

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227

    Google Scholar 

  • Chabrillat S, Goetz AFH, Krosley L, Olsen HW (2002) Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens Environ 82(2–3):431–445

    Article  Google Scholar 

  • Chang CP, Chang TY, Wang CT, Kuo CH, Chen KS (2004) Land-surface deformation corresponding to seasonal ground-water fluctuation, determined by SAR interferometry in SW Taiwan. Math Comput Simul 67(4–5):351–359

    Article  Google Scholar 

  • Collier CG (2002) Developments in radar and remote-sensing methods for measuring and forecasting rainfall. Philos Trans Roy Soc London A 360:1345–1361

    Google Scholar 

  • Cook SE, Corner RJ, Groves PR, Grealish GJ (1996) Use of airborne gamma radiometric data for soil mapping. Aus J Soil Res 34(1):183–194

    Article  Google Scholar 

  • Danielsen JE, Auken E, Jorgensen F, Sondergaard V, Sorensen KI (2003) The application of the transient, electromagnetic method in hydrogeophysical surveys. J Appl Geophys 53:181–198

    Article  Google Scholar 

  • Doll WE, Nyquist JE, Beard LP, Gamey TJ (2000) Airborne geophysical surveying for hazardous waste site characterization on the Oak Ridge Reservation, Tennessee. Geophysics 65:1372–1387

    Article  Google Scholar 

  • Droogers P, Bastiaanssen W (2002) Irrigation performance using hydrological and remote sensing modeling. J Irrig Drain Eng-ASCE 128(1):11–18

    Article  Google Scholar 

  • DWA (2000) Groundwater resources evaluation Kanye, Ramonnedi and Moshaneng Areas, TB10/3/9/95–96 1), Department of Water Affairs, Gabaronne, Botswana

  • DWA (2004) Maun Groundwater Development Project Phase 2, TB 10/3/5/2000–2001, Department of Water Affairs, Gabaronne, Botswana, TB 10/3/5/2000–2001

  • DWA (2006) Kanye emergency works, water supply project, TB 10/3/73/2001–2002, Department of Water Affairs, Gabaronne, Botswana

  • European Space Agency (2005) River and Lake. http://www.earth.esa.int/riverandlake/. Cited 29 October 2006

  • Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens Environ 101(2):212–229

    Article  Google Scholar 

  • FEWS NET (2006) Famine Early Warning Systems Network, http://www.fews.net/. Cited 29 October 2006

  • Gehrels J, Van der Lee J (1990) Rainfall and recharge: a critical analysis of the atmosphere-soil-groundwater relationship in Kanye, Semi-arid Botswana. Internal Report, Free University of Amsterdam, The Netherlands

  • Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 203(1–4):162–174

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford

  • Gumbricht T, McCarthy TS, Bauer P (2005) The micro-topography of the wetlands of the Okavango Delta, Botswana. Earth Surf Processes Landf 30(1):27–39

    Article  Google Scholar 

  • Hendricks Franssen HJWM (2001) Inverse stochastic modelling of groundwater flow and mass transport. PhD Thesis, Technical University of Valencia, Spain

  • Hendricks Franssen HJWM, Brunner P, Kgothlang L, Kinzelbach W (2006) Inclusion of remote sensing information to improve groundwater flow modeling in the Chobe region. In: MFP Bierkens, JC Gehrels, K Kovar (eds) Calibration and reliability in groundwater modeling: from uncertainty to decision making. IAHS Publication 304, IAHS, Wallingford, UK, pp 31–37

  • Herman A, Kumar VB, Arkin PA, Kousky JV (1997) Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int J Remote Sens 18(10):2147–2159

    Article  Google Scholar 

  • Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566

    Article  Google Scholar 

  • Jekeli C, Dumrongchai P (2003) On monitoring a vertical datum with satellite altimetry and water-level gauge data on large lakes. J Geod 77(7–8):447–453

    Article  Google Scholar 

  • Jorgensen F, Lykke-Andersen, H Sandersen PBE, Auken E, Normark E (2003a) Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. J Appl Geophys 53:215–228

    Article  Google Scholar 

  • Jorgensen F, Sandersen PBE, Auken E (2003b) Imaging buried Quaternary valleys using the transient electromagnetic method. J Appl Geophys 53:199–213

    Article  Google Scholar 

  • Kaab A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogramm Remote Sens 57(1–2):39–52

    Article  Google Scholar 

  • Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146

    Article  Google Scholar 

  • Klump S, Sanesi M, Hofer M, Kipfer R (2004) Using environmental tracers to develop a new conceptual groundwater model in southern Botswana. Geochim Cosmochim Acta 68(11):A465–A465, Suppl. S

    Google Scholar 

  • LaBrecque JL, Ghidella ME (1997) Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the western Weddell Basin. J Geophys Res 102:7929–7945

    Article  Google Scholar 

  • Lattmann LH (1958) Techniques of mapping geologic fracture traces and lineaments on aerial photographs. Photogr Eng 24:568–576

    Google Scholar 

  • LaVenue AM, RamaRao BS, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 2. Application. Water Resour Res 31(3):495–516

    Article  Google Scholar 

  • Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. J Hydrol 243(1–2):43–54

    Article  Google Scholar 

  • Leone AP, Escadafal R (2001) Statistical analysis of soil colour and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem). Int J Remote Sens 22(12):2311–2328

    Article  Google Scholar 

  • Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005) Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30(1–3):69–79

    Google Scholar 

  • Lubczynski MW, Gurwin J (2005) Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes: Sardon study case, Spain. J Hydrol 306(1–4):71–96

    Article  Google Scholar 

  • Madsen SN, Zebker HA, Martin, J (1993) Topographic mapping using radar interferometry-processing techniques. IEEE Trans Geosci Remote Sens 31(1):246–256

    Article  Google Scholar 

  • McCarthy J, Gumbricht T, McCarthy TS, Frost PE, Wessels K, Seidel F (2003) Flooding patterns of the Okavango Wetland in Botswana between 1972 and 2000. Ambio 32(7):453–457

    Article  Google Scholar 

  • Meijerink AMJ (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci J 4:549–561

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20

    Article  Google Scholar 

  • Microwave and Radar Institute (2006) TanDEM-X: a new high resolution interferometric SAR mission. http://www.dlr.de/hr/tdmx. Cited 29 October 2006

  • MFDP (2003) National Development Plan 9: 2003/04-2008/09, Part II, Ministry of Finance and Development Planning, Gabaronne, Botswana, page 56

  • Mushayandebvu MF, van Driel P, Reid AB, Fairhead JD (2001) Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66(3):814–823

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585

    Article  Google Scholar 

  • Oliver DS, Cunha LB, Reynolds AC (1997) Markov Chain Monte Carlo methods for conditioning a permeability field to pressure data. Math Geol 29(1):61–91

    Google Scholar 

  • Paine JG, Collins EW (2003) Applying AEM induction in groundwater salinization and resource studies, west Texas. SAGEEP, Denver, CO, pp 722–738

  • Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432

    Article  Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission: a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262

    Article  Google Scholar 

  • Rainey MP, Tyler AN, Gilvear DJ, Bryant RG, McDonald P (2003) Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote Sens Environ 86(4):480–490

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser AJ, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55(1):80–91

    Article  Google Scholar 

  • Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, CA

  • Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B-Hydrol Oceans Atmos 25(2):147–157

    Article  Google Scholar 

  • Roshier DA, Rumbachs RM (2004) Broad-scale mapping of temporary wetlands in arid Australia. J Arid Environ 56(2):249–263

    Article  Google Scholar 

  • Sandholt I, Andersen HS (1993) Derivation of actual evapotranspiration in the Senegalese Sahel, using NOAA-AVHRR data during the 1987 growing season. Remote Sens Environ 46(2):164–172

    Article  Google Scholar 

  • Sattel D, Kgotlhang L (2004) Groundwater exploration with AEM in the Boteti Area, Botswana. Explor Geophys 35:147–156

    Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66(3):988–998

    Article  Google Scholar 

  • Slater JA, Garvey G, Johnston C, Haase J, Heady B, Kroenung G, Little J (2006) The SRTM data “finishing” process and products. Photogramm Eng Remote Sens 72(3):237–247

    Google Scholar 

  • Tam VT, De Smedt F, Batelaan O, Dassargues A (2004) Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeol J 12(6):662–673

    Article  Google Scholar 

  • Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31–37

    Article  Google Scholar 

  • Valstar JR, McLaughlin DB, Stroet CBMT (2004) A representer-based inverse method for groundwater flow and transport applications. Water Resour Res 40(5):W05116

    Google Scholar 

  • Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res-Solid Earth Planets 91(B5):4993–4999

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss National Science Foundation (SNF) under project no. 200021-105384. We are grateful for the valuable comments of the editor and of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kinzelbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, P., Hendricks Franssen, HJ., Kgotlhang, L. et al. How can remote sensing contribute in groundwater modeling?. Hydrogeol J 15, 5–18 (2007). https://doi.org/10.1007/s10040-006-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0127-z

Keywords

Navigation