Skip to main content
Log in

The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In the Western Canadian Sedimentary Basin, the petroleum industry handles two geochemically distinctive brines that are traceable in the environment: formation brines extracted along with hydrocarbons from the basin, and salt-dissolution brines, produced by dissolving deep halite formations to create caverns for petroleum product storage. The concentrations of the conservative ions chloride (Cl) and bromide (Br) in many formation brines plot closely to the seawater evaporation trajectory of previous studies. These brines contain Cl/Br mass ratios of around 300, while salt-dissolution brines are relatively Br depleted, having Cl/Br mass ratios in excess of 20,000. An oilfield site in central Alberta had experienced nearby releases of both salt-dissolution and formation brines. Geochemical mixing trends were defined by theoretically mixing samples of local salt-dissolution and formation brine sources with background shallow groundwater. Most site monitoring wells and local surface water samples plotted directly on a salt-dissolution brine dilution trend, while results from four monitoring wells, all located directly downgradient of formation brine spills, suggested the mixing of formation brines into shallow groundwater. This work indicates that there is a large-scale salt-dissolution brine plume beneath the site and reinforces the use of Cl and Br concentrations and mass ratios as environmental tracers.

Résumé

Sur le bassin sédimentaire de l’Ouest canadien, l’industrie pétrolière manipule deux solutions salines géochimiquement distinctes, qui sont traçables dans l’environnement: les saumures de formation extraites conjointement aux hydrocarbures du bassin, et les solutions salines de dissolution de sel qui sont issues de la dissolution des formations d’halite dans le but de créer des cavités de stockage des produits pétroliers. Dans plusieures solutions salines de formations, les concentrations des ions conservatifs de chlorure (Cl) et bromure (Br) sont étroitement corrélees à la trajectoire d’évaporation d’eau de mer tracée lors détudes antérieures. Ces solutions salines contiennent des rapports massiques Cl/Br proches de 300, tandis que les solutions salines de dissolution sont appauvries en Br, avec des rapports massiques de plus que 20,000. Ces deux types de solutions salines, de formation et de dissolution, ont été déversées à proximité d’un champ pétrolifère au centre de l’Alberta. Les trajectoires de mélange ont été calculées de manière théorique à partir d’échantillons de solutions salines locales de dissolution et de formation locales, mélangés à l’eau souterraine peu profonde. La plupart des échantillons prélevés dans les piézomètres et les eaux de surfaces suivent la trajectoire de dilution des solutions salines de dissolution, tandis que les résultats de quatre piézomètres situés enaval des déversements de solutions salines de formation suggère leurs mélange avec de-l’eau souterraines peu profonde. Ce travail indique la présence à grande échelle d’un panache de solution saline de dissolution sous le site, et étaye l’utilisation des concentrations en Cl et Br et leurs rapports massiques comme traceurs environnementaux.

Resumen

En la Cuenca Sedimentaria Occidental Canadiense, la industria de petróleo maneja dos salmueras geoquímicamente distintas que son identificables en el ambiente: las salmueras de formación, extraídas junto con los hidrocarburos de la cuenca, y salmueras por disolución salina, producidas al disolver las formaciones profundas de halita, para crear cavernas para el almacenamiento de productos del petróleo. Las concentraciones de iones conservadores cloruro (Cl) y bromuro (Br) en muchas salmueras de formación, caen en la gráfica estrechamente en la trayectoria de evaporación del agua de mar de estudios anteriores. Estas salmueras contienen proporciones de masa Cl/Br alrededor de 300, mientras las salmueras por disolución salina son relativamente carentes de Br, haciendo proporciones de masa Cl/Br mayores de 20,000. Un sitio en un campo petrolífero en Alberta central había experimentado vertimientos cercanos tanto de salmueras por disolución salina, como de salmueras de formación. Las tendencias de mezcla geoquímica fueron definidas por medio de muestras teóricamente mezcladas, tanto de fuentes de salmueras de disolución salina local, como también de fuentes de salmuera de formación, con agua subterránea poco profunda de los alrededores. La mayoría de las muestras de los pozos de monitoreo en este sitio, lo mismo que del agua superficial local, al ser graficadas quedaron directamente en una tendencia de dilución de salmuera de disolución salina, mientras que los resultados obtenidos de cuatro pozos de monitoreo, todos localizados directamente gradiente abajo de derrames de salmuera de formación, sugieren la mezcla de salmueras de formación dentro del agua subterránea poco profunda. Este trabajo indica, que hay una pluma de salmuera de disolución salina, de gran tamaño, bajo el sitio y confirma el uso de las concentraciones de Cl y de Br y de sus proporciones de masa como trazadores medioambientales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Society of Civil Engineers (ASCE) (1996) Agricultural salinity assessment and management. In: Tanji KK (ed) ASCE manuals and reports on engineering practice No. 71, ASCE, New York

  • Bachu S, Underschultz JR, Hitchon B, Cotterill D (1993) Regional-scale subsurface hydrogeology in northeast Alberta. Alberta Research Council, Bulletin No. 61, Alberta Geological Survey, Edmonton, Alberta

    Google Scholar 

  • Beneteau KM, Rich K, Pritchard DG, Brown DR, Dai Q (2003) Investigation and computer model simulation of a regional-scale brine plume in central Alberta. Proceedings of the 56th Canadian Geotechnical Conference, 4th Joint IAH-CNC/CGS, 2003 NAGS Conference, Winnipeg, Manitoba, September 29-October 1, 2003, on CD-ROM

  • Canadian Council of Ministers of the Environment (CCME) (2002) Summary of existing Canadian environmental quality guidelines: guidelines for Water, Sediment, Soil and Tissue, CCME, Hull, QC

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geol Surv Circ 79:60–77

    Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350

    Article  Google Scholar 

  • Davis SN, Fabryka-Martin J, Wolfsberg LE (2004) Variations of bromide in potable ground water in the United States. Ground Water 42(6):902–909

    Article  Google Scholar 

  • Drever JI (1982) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Health Canada (2004) Summary of guidelines for Canadian drinking water quality. Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Environmental and Occupational Health, April, Health Canada, Ottawa, ON

  • Knuth M, Jackson JL, Whittemore DO (1990) An integrated approach to identifying the salinity source contaminating a ground-water supply. Ground Water 28(2):207–214

    Article  Google Scholar 

  • McEachern P (2000) Alberta lake management society lakewatch 2000 Report. http://alms.biology.ualberta.ca/DwnldDocs/LakeWatchRpts/Report2000.pdf. Cited 2 May 2007

  • Mossop G, Shetsen I (1994) Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists, the Alberta Research Council, the Alberta Department of Energy and the Geological Survey of Canada, Edmonton, AB, 510 pp

    Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O’Kelly DJ (2006) Characterization and identification of Na–Cl sources in ground water. Ground Water 44(2):176–187

    Article  Google Scholar 

  • Richter BC, Kreitler CW, Bledsoe BE (1993) Geochemical techniques for identifying sources of ground-water salinization. Smoley, CRC Press, Boca Raton, FL, p 258

  • Whittemore DO (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support provided by Husky Energy Inc. and Matrix Solutions Inc. over several years for this work. I am grateful to field and support personnel from Matrix and Husky for assistance and, in particular, for the encouragement and expertise of M. Mayes of Matrix for much of this study. In addition to Husky’s data, we also acknowledge the permission of KEYERA Energy and several other Canadian energy companies for the use of data from their sites. I am grateful to Maxxam Analytics Inc. of Calgary for perfecting the methods used for Br measurement by IC, work that was conducted under the direction of P. Heaton. The work benefited from reviews by G. MacMillan, D. McCoy, G. Jesse, M. Mayes, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, J.T. The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrogeol J 15, 1377–1385 (2007). https://doi.org/10.1007/s10040-007-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0201-1

Keywords

Navigation