Skip to main content
Log in

Cubic law with aperture-length correlation: implications for network scale fluid flow

Loi cubique et corrélation ouverture-longueur: application à l’écoulement d’un fluide à l’échelle du réseau

Ley cúbica con correlación a la abertura-lo ngitud: implicancias para el flujo de fluidos a escala de red

Lei cúbica com correlação abertura-comprimento: implicações para o escoamento à escala de rede

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.

Résumé

Des études antérieures ont modélisé un flux normal à la fracturation d’une roche assimilée à des plaques parallèles et calculé qu’il est proportionnel au cube de l’ouverture des plaques, par analogie avec la classique loi cubique. Si l’on introduit la racine carrée du déplacement rapporté à l’ouverture des fractures, on montre que le flux total à travers les fractures est proportionnel à la puissance cinq de l’ouverture. On a établi cette nouvelle relation en examinant une série de simulations de flux à travers des réseaux de fractures avec le modèle réseau de fractures discrètes (DFN). Le flux a été modélisé sur des réseaux présentant la même distribution de fractures, d’une part pour des longueurs de fractures corrélées avec les ouvertures, d’autre part non corrélées. Les résultats indiquent que les flux sont sensiblement plus élévés pour les réseaux DFN corrélés. De plus, les relations entre longueur et ouverture conduisent à des distributions exponentielles de la conductivité hydraulique du réseau, qui influencent grandement le tenseur de perméabilité équivalente. Ces résultats confirment l’importance de la racine carrée du déplacement rapportée au rapport d’ouverture des fractures pour le calcul du flux total et par suite met en évidence le rôle de ces corrélations dans la modélisation d’un flux.

Resumen

Estudios previos han calculado y modelado el flujo de fluidos a través de rocas fracturadas con una aproximación a placas paralelas donde el flujo volumétrico por unidad de ancho normal a la dirección de flujo es proporcional al cubo de la abertura entre las placas, tradicionalmente denominada ley cúbica. Al combinar la raíz cuadrada con la escala de la relación de desplazamiento a la longitud de abertura de fracturas de modo abierto natural, los ritmos totales de flujo a través de las fracturas resultan proporcionales a la quinta potencia de las aberturas. Esta nueva relación se exploró examinando una serie de simulaciones de flujo a través de redes de fracturas usando el modelo de redes de fracturas discretas (DFN). El flujo fue modelado a través de redes de fracturas con la misma distribución espacial de fracturas, tanto para las relaciones entre las longitudes como para las aberturas correlacionadas y no correlacionadas. Los resultados indican que los flujos son significativamente mayores para DFNs correlacionados. Además, la relación longitud - abertura conduce a distribuciones de potencias, de conductividad hidráulica de red, las cuales influyen grandemente en los valores equivalente del tensor de permeabilidad. Estos resultados confirman la importancia de la escala en la relación de la raíz cuadrada correlacionada del desplazamiento a la longitud para el flujo total a través de fracturas naturales de modo abierto y, por lo tanto, enfatiza el rol de estas correlaciones para el modelado de flujo.

Resumo

Estudos anteriores calcularam e modelaram o escoamento de um fluido em rochas fracturadas com a aproximação das placas paralelas, onde o fluxo volumétrico por unidade de largura normal à direcção do escoamento é proporcional ao cubo da abertura entre as placas, referido como a tradicional lei cúbica. Quando combinada com a relação da raiz quadrada do deslocamento com o comprimento da abertura das fracturas, observa-se que o fluxo total através das aberturas é proporcional às aberturas elevadas à quinta potência. Esta nova relação foi explorada através da análise de um conjunto de simulações do escoamento através de uma rede de fracturas utilizando um modelo de rede discreta de fracturas (discrete fracture network model - DFN). O escoamento foi modelado através de uma rede de fracturas com a mesma distribuição espacial para ambas as relações de comprimento-abertura correlacionadas e não correlacionadas. Os resultados indicam que os escoamentos são significativamente superiores para DFNs correlacionados. Além disso, as relações comprimento-abertura conduziram a leis de distribuição exponencial de redes de condutividade hidráulica que influenciam assinalavelmente os valores dos tensores de permeabilidade equivalente. Estes resultados confirmam a importância da correlação da relação da raiz quadrada do deslocamento com a escala de comprimento para um escoamento total através de fracturas e, assim, enfatiza o papel dessas correlações na modelação do escoamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baghbanan A, Jing L (2006) Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci 44:704–719

    Google Scholar 

  • Bandis SC, Makurat A, Vik G (1985) Predicted and measured hydraulic conductivity of rock joints. Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, Sweden, 15–20 September, pp 269–280

  • Barton NR, Bandis SC, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Min Sci Geomech Abstr 22(3):121–140

    Article  Google Scholar 

  • Bear J, Tsang CF, de Marsily G (1993) Flow and contaminant transport in fractured rock. Academic, San Diego, CA

    Google Scholar 

  • Best DJ, Fisher NI (1979) Efficient simulation of the von Mises distribution. Appl Stat 28(2):152–157

    Article  Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geologic media. Rev Geophys 39(3):347–383

    Article  Google Scholar 

  • Boussinesq J (1868) Memoire sur l’influence des frottements dans les mouvements reguliers des fluids [Thesis about the influence of friction within the steady flow of fluids]. J Math Pures Appl 13:377–424

    Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92:1337–1347

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985) The closure of random elastic surfaces in contact. J Geophys Res 90:5531–5545

    Article  Google Scholar 

  • Chen SH, Feng XM, Isam S (2008) Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method. Int J Numer Anal Meth Geomech 32:1459–1477

    Article  Google Scholar 

  • Clark RM, Cox SJD (1996) A modern regression approach to determining fault displacement-length scaling relationship. J Struct Geol 18:147–152

    Article  Google Scholar 

  • Cook AM, Myer LR, Cook NGW, Doyle FM (1990) The effect of tortuosity on flow through a natural fracture. In: Hustrulid WA, Johnson WA (ed) Rock mechanics contributions and challenges, Proceedings of the 31st US Symposium on Rock Mechanics. Golden, CO, June 1990

  • Cowie PA, Scholz CH (1992a) Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J Struct Geol 14:1133–1148

    Article  Google Scholar 

  • Cowie PA, Scholz CH (1992b) Displacement-length scaling relationship for faults: data synthesis and discussion. J Struct Geol 14:1149–1156

    Article  Google Scholar 

  • Davy P (1993) On the frequency-length distribution of the San Andreas fault system. J Geophys Res 98:12141–12151

    Article  Google Scholar 

  • Dawers NH, Anders MH (1995) Displacement-length scaling and fault linkage. J Struct Geol 17:607–614

    Article  Google Scholar 

  • Dawers NH, Anders MH, Scholz CH (1993) Growth of normal faults: displacement-length scaling. Geology 21:1107–1110

    Article  Google Scholar 

  • De Dreuzy J-R, Davy P, Bour O (2001) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution 2: permeability networks based on lognormal distribution of apertures. Water Resour Res 37:2079–2095

    Article  Google Scholar 

  • Dreuzy D, Davy P, Bour O (2002) Hydraulic properties of two-dimensional fracture networks following power law distributions of length and aperture. Water Resour Res 38, W06412. doi:10.1029/2001WR001009

    Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Min Sci Geomech Abstr 15:249–257

    Article  Google Scholar 

  • Hartley L, Cox L, Holton D, Hunter F, Joyce S, Gylling B, Lindgren M (2004) Groundwater flow and radionuclide transport modelling using CONNECTFLOW in support of the SR Can assessment. SKB Rapport R-04-61, Svensk Kärnbränslehantering AB. Swedish Nuclear Fuel and Waste Management Co, Stockholm

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack. J Appl Mech 24:361–369

    Google Scholar 

  • Jaeger JC (1969) Elasticity, fracture and flow: with engineering and geological applications. Chapman and Hall, London

    Google Scholar 

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics. Chapman and Hall, London

    Google Scholar 

  • Krantz RE, Frankel AD, Engelder T, Scholz CH (1979) The permeability of whole and jointed Barre granite. Int J Rock Min Sci Geomech Abstr 16:225–234

    Article  Google Scholar 

  • Kulatilake PHSW, Panda B (2000) Effect of block size and joint geometry on jointed rock hydraulics and REV. J Engrg Mech 126(8):850–858

    Article  Google Scholar 

  • Lawn B (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lomize GM (1961) Filtrarsiia v Treshchinovatykh Porod [Water flow in jointed rock]. Gosenergoizdat, Moscow

  • Long JCS, Gilmour P, Witherspoon PA (1985) A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resour Res 21:1105–1115

    Article  Google Scholar 

  • Louis CA (1969) A study of groundwater flow in jointed rock and its influence of the stability of rock masses. Rock Mechanics Research Report 10. Imperial College, London

  • Marrett R (1996) Aggregate properties of fracture populations. J Struct Geol 18:169–178

    Article  Google Scholar 

  • Masihi M, King PR (2007) A correlated fracture network: modeling and percolation properties. Water Resour Res 43, W07439. doi:10.29/2006WR005331

  • Min KB, Jing L, Stephansson O (2004) Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol J 12:497–510

    Article  Google Scholar 

  • Neuman SP (2008) Multiscale relationships between fracture length, aperture, density and permeability. Geophys Res Lett 35, L22402. doi:10.1029/2008GL035622

    Article  Google Scholar 

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC

    Google Scholar 

  • Odling NE (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J Struct Geol 19:1257–1271

    Article  Google Scholar 

  • Olson JE (2003) Sublinear scaling of fracture aperture versus length: an exception or the rule? J Geophys Res 108(B9), 2413. doi:10.1029/2001JB000419

  • Paris PC, Sih GC (1965) Stress analysis of cracks. In: Fracture toughness testing and its applications. Special Technical Publication, vol. 381, American Society for Testing and Materials, West Conshohocken, PA, pp 30–83

  • Pollard DD, Segall P (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joint, veins, dikes and solution surfaces. In: Atkinson BK (ed) Fracture mechanics of rock. Academic Press, San Diego, CA

    Google Scholar 

  • Priest SD (1993) Discontinuity analysis of rock engineering. Chapman and Hall, London

    Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22(4):251–261

    Article  Google Scholar 

  • Renshaw CE (1995) On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J Geophys Res 100:24629–24636

    Article  Google Scholar 

  • Renshaw CE (1996) Influence of subcritical fracture growth on the connectivity of fracture networks. Water Resour Res 32(6):1519–1530

    Article  Google Scholar 

  • Renshaw CE (1999) Connectivity of joint networks with power law length distributions. Water Resour Res 35(9):2661–2670

    Article  Google Scholar 

  • Rivard C, Delay F (2004) Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields. Hydrogeol J 12:613–627

    Article  Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Schultz RA, Soliva R, Fossen H, Okubo CH, Reeves DM (2008a) Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them. J Struct Geol 30:1405–1411

    Article  Google Scholar 

  • Schultz RA, Mège D, Diot H (2008b) Emplacement conditions of igneous dikes in Ethiopian Traps. J Volc Geotherm Res 178(4):683–692

    Article  Google Scholar 

  • Sih GC (1962) On singular character of thermal stresses near a crack tip. J Appl Mech 29:587

    Google Scholar 

  • Sih GC, Libowitz H (1968) Fracture. Academic, New York

    Google Scholar 

  • Snow DT (1965) A parallel plate model of fractured permeable media. PhD Thesis Univ. of Calif., Berkeley, USA

  • Taylor WL, Pollard DD, Aydin A (1999) Fluid flow in discrete joint sets: field observations and numerical simulations. J Geophys Res 104:28983–29006

    Article  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86:9287–9298

    Article  Google Scholar 

  • Vermilye JM, Scholz CH (1995) Relation between vein length and aperture. J Struct Geol 17:423–434

    Article  Google Scholar 

  • Ward KA (1993) Dike emplacement and deformation in the Donner Summit pluton, central Sierra Nevada, California. MSc Thesis, Univ. of Nev., USA

  • Watanabe N, Hirano N, Tsuchia N (2008) Determination of aperture structure and fluid flow in a rock fracture by high-resolution numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resour Res 44, W06412. doi:10.1029/2006WR005411

    Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Zhang X, Sanderson DJ, Harkness RM, Last NC (1996) Evaluation of the 2-D permeability tensor for fractured rock masses. Int J Rock Mech Min Sci Geomech Abstr 33(1):17–37

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Johnson, an anonymous referee, and the Associate Editor for their detailed and thoughtful comments that sharpened the final paper. This work was supported by a grant from NASA’s Planetary Geology and Geophysics Program to R.A.S.; R.P. and D.M.R. were partially supported by funding provided by the Desert Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klimczak.

Appendices

Appendix 1: Notation

a :

Fracture length distribution exponent

α :

Proportionality coefficient (opening-mode fractures), m1/2

b :

Aperture, m

D :

Displacement, m

D avg :

Average opening displacement, m

D max :

Maximum opening displacement, m

∆ σ I :

Opening-mode driving stress, Pa

E :

Young’s modulus, Pa

θ :

Fracture orientation

g :

Acceleration of gravity, m/s2

γ :

Proportionality coefficient (faults)

H :

Height of parallel plates, fracture height, m

h :

Hydraulic head gradient

H x :

Head gradient in x-direction

H y :

Head gradient in y-direction

I0(ĸ):

Modified Bessel function of order zero

K Ic :

Fracture toughness, MPa m1/2

K :

Hydraulic conductivity, m/s

\( \overline{\overline k} \) :

Permeability tensor, m2

K xx :

Principal direction of permeability tensor, m2

K xy :

Principal direction of permeability tensor, m2

K yx :

Cross direction of permeability tensor, m2

K yy :

Cross direction of permeability tensor, m2

κ :

Variation in fracture orientation

L :

Fracture length, m

L min :

Minimum fracture length, m

μ :

Viscosity, Pa s

Q :

Volumetric discharge, m3/s

q xx :

Principal direction of specific discharge, m/s

q yx :

Cross direction of specific discharge, m/s

q yx :

Cross direction of specific discharge, m/s

q yy :

Principal direction of specific discharge, m/s

ρ :

Fluid density, kg/m3

U :

Random variable for fracture length computation

V f :

Fracture volume, m3

ν :

Poisson’s ratio

W :

Length of parallel plates

ω :

Mean fracture orientation

Appendix 2

The fault datasets presented in Fig. 3 are taken from Schultz et al. (2008a) and references therein. The opening-mode fracture datasets in Fig. 4 consist of seven previously reported datasets from Olson (2003) and Schultz et al. (2008a, b). Three newly acquired datasets were measured in outcrops of the Sierra Nevada batholith around Lake Tahoe, CA.

A set of NW/SE striking vertical dikes was carefully measured in terms of their length and opening displacement in exposures of glacially polished Mesozoic granitoids of the Donner Summit Pluton, near Donner Pass, CA. Two types of dikes were observed. Simple dikes comprise the majority of dikes in this region and are of granodioritic composition. The second type of dikes, referred to as complex dikes consist of two phases, an outer pegmatitic phase and an inner phase of a more mafic composition (Ward 1993). This dataset consists of a total of 28 D/L measurements ranging from 1.13 to 50.5 m in length.

Glacially polished granitoids are also present west of Emerald Bay State Park, CA. Here, a set of E/W striking dikes of pegmatitic composition and another set of steeply NE\SW striking quartz-filled veins was measured between Cascade Lake and Granite Lake. Both sets each include 14 individual measurements of fracture length and opening displacement. Measured dike lengths range between 1.38 and 48 m. Measured veins have lengths between 2.06 and 11.42 m. Measurements were taken with a 30-m steel tape, displacements and lengths have measurement uncertainties of ±0.5 and ±10 mm, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimczak, C., Schultz, R.A., Parashar, R. et al. Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18, 851–862 (2010). https://doi.org/10.1007/s10040-009-0572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0572-6

Keywords

Navigation