Skip to main content

Advertisement

Log in

Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia)

Variabilité saisonnière et spatiale du bilan d’eau de la toundra polygonale: Delta de la rivière Lena, Nord Sibérien (Russie)

Variabilidad espacial y estacional del balance de agua de polígonos de tundra: Delta del Río Lena, norte de Siberia (Rusia)

多边形冻原地下水均衡的空间和季节变化:以俄罗斯北西伯利亚的Lena河三角洲为例

Variabilidade espacial e sazonal do balanço hídrico da tundra poligonal: Delta do rio Lena, norte da Sibéria (Rússia)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.

Résumé

Le bilan d’eau estival d’un bassin d’alimentation typique de la toundra polygonale sibérienne a fait l’objet d’investigations afin d’identifier la dynamique spatio-temporelle des ses principaux processus hydrologiques. Les résultats montrent que, à côté de la précipitation et de l’évapotranspiration, un flux latéral influence considérablement les conditions hydrogéologiques spécifiques du site. La microtopographie marquée de la toundra polygonale contrôle fortement l’écoulement latéral et la modalité d’emmagasinement du bassin objet de l’investigation. Les bords intacts des polygones centrés bas constituent des barrières hydrologiques, qui libèrent l’eau accumulée en été plus tard que les polygones à bords dégradés et dépressions au dessus des biseaux glacées dégradées. La fonction barrière des bordures est fortement contrôlée par le dégel du sol, qui ouvre de nouveaux chenaux d’écoulement en subsurface et en accroît la connectivité hydrologique. C’est pourquoi, la dynamique du dégel détermine l’instant et le volume d’émission d’eau en subsurface et la redistribution de la réserve dans le bassin versant. Les conductivités hydrauliques des bordures polygonales élevées diminuent brusquement avec la transition d’horizons organiques à des horizons minéraux. Ceci cause un drainage superficiel rapide de l’eau de précipitation vers les centres déprimés des polygones et goulottes. Le relargage de l’eau en réserve depuis les centres à travers des couches plus profondes et moins conductrices aide à maintenir élevée la surface libre de l’aquifère sous le réseau de drainage superficiel des goulottes durant tout l’été.

Resumen

Se investiga el balance de agua de verano en una típica cuenca siberiana de polígonos de tundra para identificar la dinámica espacial y temporal de sus principales procesos hidrológicos. Los resultados muestran que, además de la precipitación y evapotranspiración, el flujo lateral influye considerablemente las condiciones hidrológicas del sitio específico. La destacada microtopografía de los polígonos de tundra controla fuertemente el comportamiento del flujo lateral y almacenamiento de la cuenca investigada. Los bordes intactos de los polígonos bajos centrados constituyen barreras hidrológicas, que liberan el agua de almacenamiento del verano después que los polígonos con bordes degradados y canales por encima de cuñas degradadas del hielo. La función de barrera de los bordes está controlada fuertemente por el deshielo del suelo, que abre nuevas trayectorias al flujo subsuperficial y aumenta la conectividad hidrológica subsuperficial. Además, la dinámica de deshielo del suelo determina la magnitud y el tiempo de la salida subsuperficial y la redistribución del almacenamiento dentro de la cuenca. Las conductividades hidráulicas en los bordes elevados del polígono disminuyen drásticamente con la transición de capas orgánicas a minerales. Esto causa un rápido drenaje subsuperficial somero del agua de lluvia hacia el centro de los polígonos deprimidos y canales. La reliberación del agua del almacenamiento desde el centro a través de capas menos conductivas y más profundas ayuda a mantener un nivel freático alto en la red de drenaje superficial de canales durante todo el verano.

摘要

为确定它的主要水文过程的时空动态,本文研究了一个典型的西伯利亚多边形冻原流域在夏季的水均衡。结果显示,除了降水和蒸发蒸腾,侧向流在相当程度上影响着特定场地的水文条件。多边形冻原主要的微地形特征强烈控制着研究流域的侧向流和储存行为。在中心偏低的多边形的完整边缘上建造水文屏障,以此可利用退化冰楔之上退化的边缘和凹槽在夏天释放储存的水。边缘上屏障的作用受到土壤解冻强烈的控制,解冻作用打开了地下水流的流径,提高了地下的水文连通性。因此,土壤解冻的动态决定了流出的地下水的规模和时间,以及流域内所储存水量的重新分配。升高的多边形边缘从有机层过渡到矿物层,渗透系数急剧减小。这造成了浅部雨水向凹陷的多边形中心和洼地迅速排水。所储存的水通过更深部的低渗透岩层从中心重新释放,这有助于夏季在地表凹槽排水系统中保持一个较高的水位。

Resumo

É investigado o balanço hídrico estival de uma típica bacia hidrográfica de tundra poligonal para identificar as dinâmicas espaciais e temporais dos seus principais processos hidrológicos. Os resultados mostram que, para além da precipitação e da evapotranspiração, o escoamento lateral influencia consideravelmente as condições hidrológicas em cada local. A característica microtopografia da tundra poligonal controla fortemente o escoamento lateral e o comportamento do armazenamento na bacia investigada. Os bordos intactos dos polígonos com centro deprimido constituem barreiras hidrológicas que libertam a água armazenada mais tarde no verão do que nos polígonos com bordos degradados e fendas situadas acima das cunhas de gelo degradadas. A função de barreira dos bordos é fortemente controlada pelo descongelamento do solo que abre novos percursos de escoamento subterrâneo e incrementa a conectividade hidrológica subsuperficial. Consequentemente, a dinâmica do descongelamento do solo determina a magnitude e a temporização do escoamento e a redistribuição do armazenamento dentro da bacia. A condutividade hidráulica nos bordos poligonais elevados diminui drasticamente com a transição entre as camadas orgânicas a as camadas minerais. Isto provoca uma rápida drenagem subsuperficial pouco profunda da água de chuva em direção aos centros deprimidos e às fendas. A re-libertação da água armazenada a partir dos centros através de camadas mais profundas e menos condutivas ajudam a manter ao longo do verão um nível de água elevado na rede de drenagem superficial formada pelas fendas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alavi N, Warland JS, Berg AA (2006) Filling gaps in evapotranspiration measurements for water budget studies: evaluation of a Kalman filtering approach. Agr Forest Meteorol 141(1):57–66

    Article  Google Scholar 

  • Andersen HE (2003) Hydrology, Nutrient processes and vegetation in floodplain wetlands. PhD Thesis, National Environmental Research Institute, Silkeborg, Denmark

  • Blok D, Heijmans MMPD, Schaepman-Strub G et al (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosyst 14(7):1055–1065

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G03025. doi:10.1029/2007JG000540

    Article  Google Scholar 

  • Boudreau L, Rouse W (1995) The role of individual terrain units in the water balance of wetland tundra. Clim Res 5(1):31–47

    Article  Google Scholar 

  • Bowling L, Kane DL, Gieck R et al (2003) The role of surface storage in a low-gradient arctic watershed. Water Resour Res 39(4):1087. doi:10.1029/2002WR001466

    Article  Google Scholar 

  • Brown VA, McDonnell JJ, Burns DA et al (1999) The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. J Hydrol 217(3):171–190

    Article  Google Scholar 

  • Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine catchment. J Hydrol 253:110–129

    Article  Google Scholar 

  • Chappell NA, Ternan JL, Williams AG et al (1990) Preliminary analysis of water and solute movement beneath a coniferous hillslope in Mid-Wales, U.K. J Hydrol 116:201–215

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agr Forest Meteorol 78:83–105

    Article  Google Scholar 

  • Førland EJ (1996) Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute, Oslo, Norway

    Google Scholar 

  • Grigoriev N (1960) The temperature of permafrost in the Lena delta basin: deposit conditions and properties of the permafrost in Yakutia. Yakutsk 2:97–101

    Google Scholar 

  • Guan XJ, Spence C, Westbrook CJ (2010) Shallow soil moisture–ground thaw interactions and controls, part 2: influences of water and energy fluxes. Hydrol Earth Syst Sci 14(7):1387–1400

    Article  Google Scholar 

  • Hinzman LD, Kane DL, Gieck R et al (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Sci Tech 19(2):95–110

    Article  Google Scholar 

  • Inagaki A, Letzel MO, Raasch S et al (2006) Impact of surface heterogeneity on energy imbalance: a study using LES. J Meteorol Soc Jpn 84(1):187–198

    Article  Google Scholar 

  • Jorgenson T, Romanovsky V, Harden J et al (2010) Resilience and vulnerability of permafrost to climate change. Can J Forest Res 40(7):1219–1236

    Article  Google Scholar 

  • Kane DL, Gieck R, Boudreau L (2008) Water balance for a low gradient watershed in northern Alaska. In: Kane DL, Hinkel KM (eds) Proceedings of the Ninth International Conference on Permafrost, University of Alaska, Institute of Northern Engineering, Fairbanks, AK, pp 883–888

  • Kulin G, Compton PR (1975) A guide to methods and standards for the measurement of water flow. US Dept. of Commerce, National Bureau of Standards, Washington, DC

  • Kutzbach L (2006) The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

  • Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochem 69(3):341–362

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S et al (2011) The surface energy balance of a polygonal tundra site in northern Siberia, part 1: spring to fall. Cryosphere 5(1):151–171

    Article  Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Bound-Lay Meteorol 123(2):263–267

    Article  Google Scholar 

  • Liljedahl A, Boudreau L, Harazono Y et al (2011) Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 8(11):3375–3389

    Article  Google Scholar 

  • Liljedahl AK, Hinzman LD, Schulla J (2012) Ice-wedge polygon type controls low-gradient watershed scale hydrology. In: Hinkel KM (ed) Proceedings of the Tenth International Conference on Permafrost, vol 1: International contributions. The Northern Publisher, Salehard, Russia, pp 231–236

    Google Scholar 

  • Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1475–1491

    Article  Google Scholar 

  • MacDonald LA, Turner KW, Balasubramaniam AM et al (2012) Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods. Hydrol Process 26(1):117–129

    Article  Google Scholar 

  • Mauder M, Liebethal C, Göckede M et al (2006) Processing and quality control of flux data during LITFASS-2003. Bound-Lay Meteorol 121(1):67–88

    Article  Google Scholar 

  • McDonnell JJ, Owens IF, Stewart MK (1991) A case study of shallow flow paths in a steep zero-order basin. J Am Water Resour Assoc 27(4):679–685

    Article  Google Scholar 

  • McGlynn BL, McDonnell JJ, Seibert J et al (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater–streamflow relations. Water Resour Res 40(7):W07504. doi:10.1029/2003WR002494

    Article  Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Bound-Lay Meteorol 43(3):231–245

    Article  Google Scholar 

  • McNamara JP, Oatley JA, Kane DL et al (2008) Case study of a large summer flood on the North Slope of Alaska: bedload transport. Hydrol Res 39(4):299–308

    Article  Google Scholar 

  • Meerveld HJT, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. the fill and spill hypothesis. Water Resour Res 42(2):W02411. doi:10.1029/2004WR003800

    Article  Google Scholar 

  • Metcalfe RA, Buttle JM (2001) Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada. Hydrol Process 15(12):2305–2324

    Article  Google Scholar 

  • Minke M, Donner N, Karpov NS et al (2007) Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatlands Int 1:36–40

    Google Scholar 

  • Minke M, Donner N, Karpov NS et al (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr Periglac Process 20(4):357–368

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound-Lay Meteorol 37(1):17–35

    Article  Google Scholar 

  • Muster S, Langer M, Heim B et al (2012) Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia. Tellus B 64. doi:10.3402/tellusb.v64i0.17301

    Article  Google Scholar 

  • Nimmo JR, Schmidt KM, Perkins KS et al (2009) Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone J 8(1):142–149

    Article  Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD et al (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res 111:G02020. doi:10.1029/2005JG000055

    Article  Google Scholar 

  • Petrone RM, Devito KJ, Silins U et al (2008) Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plain, Canada. Mires Peat 3:1–13

    Google Scholar 

  • Phillips RW, Spence C, Pomeroy JW (2011) Connectivity and runoff dynamics in heterogeneous basins. Hydrol Process 25(19):3061–3075

    Google Scholar 

  • Quinton W, Carey S (2008) Towards an energy-based runoff generation theory for tundra landscapes. Hydrol Process 22(23):4649–4653

    Article  Google Scholar 

  • Quinton W, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Process 13(16):2563–2581

    Article  Google Scholar 

  • Quinton W, Hayashi M, Carey S (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22(15):2829–2837

    Article  Google Scholar 

  • ROSHYDROMET (2012) Weather Information for Tiksi. Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow. Available at http://www.worldweather.org/107/c01040.htm. Accessed 1 August 2012

  • Roulet NT, Woo MK (1986a) Wetland and lake evaporation in the low Arctic. Arct Alp Res 195–200

  • Roulet NT, Woo MK (1986b) Hydrology of a wetland in the continuous permafrost region. J Hydrol 89:73–91

    Article  Google Scholar 

  • Rovansek R, Hinzman LD, Kane DL (1996) Hydrology of a tundra wetland complex on the Alaskan Arctic coastal plain, U.S.A. Arct Alp Res 28(3):311–317

    Article  Google Scholar 

  • Rubel F, Hantel M (1999) Correction of daily rain gauge measurements in the Baltic Sea drainage basin. Nord Hydrol 30(3):191–208

    Google Scholar 

  • Schuur EA, Bockheim J, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioSci 58(8):701–714

    Article  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA, Natural Resources Conservation Service, Washington, DC

  • Spence C (2010) A paradigm shift in hydrology: storage thresholds across scales influence catchment runoff generation. Geogr Compass 4(7):819–833

    Article  Google Scholar 

  • Spence C, Woo MK (2003) Hydrology of subarctic Canadian shield: soil-filled valleys. J Hydrol 279:151–166

    Article  Google Scholar 

  • Townsend-Small A, McClelland J, Max Holmes R et al (2011) Seasonal and hydrologic drivers of dissolved organic matter and nutrients in the upper Kuparuk River, Alaskan Arctic. Biogeochem 103(1):109–124

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • White D, Hinzman LD, Alessa L et al (2007) The arctic freshwater system: changes and impacts. J Geophys Res 112:G04S54. doi:10.1029/2006JG000353

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E et al (2002) Energy balance closure at FLUXNET sites. Agr Forest Meteorol 113(1–4):223–243

    Article  Google Scholar 

  • Woo MK, Guan XJ (2006) Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafr Periglac Process 17(4):309–323

    Article  Google Scholar 

  • Woo MK, Young KL (2006) High arctic wetlands: their occurrence, hydrological characteristics and sustainability. J Hydrol 320:432–450

    Article  Google Scholar 

  • Woo MK, Kane DL, Carey S et al (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19(2):237–254

    Article  Google Scholar 

  • Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:W05414. doi:10.1029/2008WR006880

    Article  Google Scholar 

  • Yang D, Kane DL, Zhang Z et al (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32(19):L19501. doi:10.1029/2005GL024057

    Article  Google Scholar 

  • Young KL, Abnizova A (2011) Hydrologic thresholds of ponds in a polar desert wetland environment, Somerset Island, Nunavut, Canada. Wetl 31(3):535–549

    Article  Google Scholar 

  • Zona D, Lipson DA, Zulueta RC et al (2011) Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain. J Geophys Res 116:G00108. doi:10.1029/2009JG001241

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of M. Helbig, P. Schreiber, B. R. K. Runkle, and L. Kutzbach through the Cluster of Excellence “CliSAP” (EXC177), University of Hamburg, funded by the German Research Foundation (DFG), and the support of J. Boike and M. Langer through a grant (VH-NG 203) awarded to Julia Boike, funded by the Helmholtz Association. The support of the Friedrich Ebert Foundation (FES) which supported M. Helbig through a travel stipend is appreciated. The authors also acknowledge the financial support by the European Union FP7-ENVIRONMENT project PAGE21 under contract no. GA282700. Special thanks are due to Günter Stoof, Waldemar Schneider, and Karoline Wischnewski for their support during field data collection and to Niko Bornemann for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Helbig.

Additional information

Published in the theme issue “Hydrogeology of Cold Regions”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbig, M., Boike, J., Langer, M. et al. Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia). Hydrogeol J 21, 133–147 (2013). https://doi.org/10.1007/s10040-012-0933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0933-4

Keywords

Navigation