Skip to main content
Log in

Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

Revue: Les expressions mathématiques pour estimer la perméabilité équivalente de réseaux de fracture de roche

Revisión: Las expresiones matemáticas para estimar la permeabilidad equivalente en redes de fracturas de roca

综述: 岩体裂隙网络渗透系数的数学表达式

Revisão: Expressões matemáticas para estimar permeabilidade equivalente para redes de fraturadas em rochas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

Résumé

Les réseaux de fracture jouent un rôle plus significatif dans l’écoulement d’un fluide et du transport de soluté dans les massifs rocheux fracturés, en comparaison avec celui de la matrice rocheuse. Une estimation précise de la perméabilité des réseaux de fracture aiderait les chercheurs et les ingénieurs à mieux évaluer la performance des projets liés à l’écoulement du fluide dans les massifs rocheux fracturés. Cette étude présente un examen des travaux antérieurs qui ont porté sur l’estimation de la perméabilité équivalente de réseaux de fractures discrétisés (RFDs) en deux dimensions (2-D) compte tenu des influences des propriétés géométriques des massifs rocheux fracturés. Les expressions mathématiques pour les effets de neuf paramètres importants qui ont une incidence significative sur la perméabilité équivalente des RFDs sont résumées, comprenant (1) la distribution des longueurs de fracture, (2) la distribution des ouvertures, (3) la rugosité de la surface des fractures, (4) les fractures sans issues , (5) le nombre d’intersections, (6) le gradient hydraulique, (7) les conditions aux limites, (8) l’anisotropie, et (9) l’échelle. Les développements récents des réseaux de fractures en 3-D sont brièvement revus afin de souligner l’importance de l’utilisation de modèles 3-D dans les recherches futures.

Resumen

Las redes de fracturas juegan un papel significativo en la conducción del flujo del fluido y en el transporte de solutos en las masas de roca fracturada, en comparación con el de la matriz de la roca. La estimación precisa de la permeabilidad de las redes de fracturas ayudaría a los investigadores e ingenieros a evaluar mejor el rendimiento de los proyectos relacionados con el flujo de fluido en masas de rocas fracturadas. Este estudio proporciona una revisión de trabajos previos que se han centrado en la estimación de la permeabilidad equivalente de redes bidimensionales (2-D) discretas de fractura (dfns) teniendo en cuenta las influencias de las propiedades geométricas de las masas de rocas fracturadas. Se resumen las expresiones matemáticas para los efectos de los nueve parámetros importantes que impactan significativamente sobre la permeabilidad equivalente de dfns, incluyendo (1) la distribución de la longitud de la fractura, (2) la distribución de las aberturas, (3) la rugosidad de la superficie de fractura, (4) las fracturas cerradas, (5) el número de intersecciones, (6) el gradiente hidráulico, (7) la tensión límite, (8) la anisotropía, y (9) la escala. Se revisa brevemente el reciente desarrollo de redes de fracturas 3-D para resaltar la importancia de la utilización de modelos 3-D en futuras investigaciones.

摘要

裂隙网络相对于岩石基质对裂隙岩体内流体流动和污染物运移等性质有着更为重要的影响。准确预测裂隙网络的渗透系数将有助于研究人员更好的评估与裂隙岩体渗流相关的各项工程的安全稳定性。本综述回顾了前人利用裂隙岩体几何信息计算二维离散裂隙网络渗透系数的相关研究,讨论了裂隙网络模型中9个重要参数对渗透系数数学表达式的影响,这9个参数包括:(1) 裂隙长度分布, (2) 裂隙开度分布, (3) 裂隙表面粗糙度, (4) 裂隙断头, (5) 交点数量, (6) 水力梯度, (7) 边界应力, (8) 各向异性, (9) 模型尺寸。本文也介绍了三维裂隙网络模型的发展现状,并强调了在将来的工作中采用三维模型来评估渗透系数的重要性。

Resumo

Redes fraturadas desempenham um papel mais significante no fluxo de condução do fluido e no transporte de soluto na massa da rocha fraturada, comparado com o mesmo na rocha matriz. Estimativa precisa da permeabilidade das redes de fratura pode ajudar pesquisadores e engenheiros a melhor avaliar o desempenho dos processos associados com o fluxo de fluido na massa de rocha fraturada. Esse estudo fornece uma revisão de trabalhos anteriores que focaram na estimativa de permeabilidade de redes de fratura discretas (RFDs) bidimensionais (2-D) considerando a influência de propriedades geométricas de massa de rochas fraturadas. As expressões matemáticas para os efeitos de nove parâmetros importantes de impacto significante da permeabilidade equivalente das RFDs foram resumidas, incluindo (1) distribuição no comprimento da fratura, (2) distribuição da abertura, (3) rugosidade da superfície da fratura, (4) final da fratura, (5) número de intersecções, (6) gradiente hidráulico, (7) stress do limite, (8) anisotropia e (9) escala. Desenvolvimentos recentes de redes de fraturas 3-D foram brevemente revisados para destacar a importância da utilização de modelos 3-D em pesquisas futuras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler PM, Malevich AE, Mityushev VV (2013) Nonlinear correction to Darcy’s law for channels with wavy walls. Acta Mech 224(8):1823–1848. doi:10.1007/s00707-013-0840-3

    Article  Google Scholar 

  • Advani SH, Lee TS, Lee JK (1990) Three-dimensional modeling of hydraulic fractures in layered media: part I—finite element formulations. J Energy Resour 112(1):1–9. doi:10.1115/1.2905706

    Article  Google Scholar 

  • Andersson J, Dverstorp B (1987) Conditional simulations of fluid flow in three‐dimensional networks of discrete fractures. Water Resour Res 23(10):1876–1886. doi:10.1029/WR023i010p01876

    Article  Google Scholar 

  • Andrade JS Jr, Oliveira EA, Moreira AA, Herrmann HJ (2009) Fracturing the optimal paths. Phys Rev Lett 103(22):225503. doi:10.1103/PhysRevLett.103.225503

    Article  Google Scholar 

  • Askari M, Ahmadi M (2007) Failure process after peak strength of artificial joints by fractal dimension. Geotech Geol Eng 25(6):631–637. doi:10.1007/s10706-007-9135-6

    Article  Google Scholar 

  • Auradou H, Drazer G, Hulin JP, Koplik J (2005) Permeability anisotropy induced by the shear displacement of rough fracture walls. Water Resour Res 41(9). doi:10.1029/2005WR003938

  • Babadagli T (2001) Fractal analysis of 2-D fracture networks of geothermal reservoirs in south-western Turkey. J Volcanol Geotherm Res 112(1):83–103. doi:10.1016/S0377-0273(01)00236-0

    Article  Google Scholar 

  • Babadagli T, Develi K (2003) Fractal characteristics of rocks fractured under tension. Theor Appl Fract Mech 39(1):73–88. doi:10.1016/S0167-8442(02)00139-8

    Article  Google Scholar 

  • Babadagli T, Ren X, Develi K (2015) Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture: an experimental investigation. Int J Multiphas Flow 68:40–58. doi:10.1016/j.ijmultiphaseflow.2014.10.004

    Article  Google Scholar 

  • Bagde MN, Raina AK, Chakraborty AK, Jethwa JL (2002) Rock mass characterization by fractal dimension. Eng Geol 63(1):141–155. doi:10.1016/S0013-7952(01)00078-3

    Article  Google Scholar 

  • Baghbanan A, Jing L (2007) Hydraulic properties of fracture rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci 44(5):704–719. doi:10.1016/j.ijrmms.2006.11.001

    Article  Google Scholar 

  • Baghbanan A, Jing L (2008) Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. Int J Rock Mech Min Sci 45:1320–1334. doi:10.1016/j.ijrmms.2008.01.015

    Article  Google Scholar 

  • Balberg I (1986) Connectivity and conductivity in 2D and 3D fracture systems. Ann Isr Phys Soc 8:89–101

    Google Scholar 

  • Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30(7):3933–3943. doi:10.1103/PhysRevB.30.3933

    Article  Google Scholar 

  • Balberg I, Berkowitz B, Drachsler GE (1991) Application of a percolation model to flow in fractured hard rocks. J Geophys Res Solid Earth (1978–2012) 96(B6):10015–10021. doi:10.1029/91JB00681

    Article  Google Scholar 

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci 20(6):249–268. doi:10.1016/0148-9062(83)90595-8

    Article  Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332. doi:10.1016/0013-7952(73)90013-6

    Article  Google Scholar 

  • Barton CC, Larsen E (1985) Fractal geometry of two-dimensional fracture networks at Yucca Mountain, south-western Nevada. In: Proceedings of the International Symposium on Fundamentals of Rock Joints. Bjorkliden, Sweden, September 1985, pp 77–84

  • Barton N, Quadros E (2014) Anisotropy is everywhere, to see, to measure, and to model. Rock Mech Rock Eng: 1–17. doi:10.1007/s00603-014-0632-7

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Beckwith R (2010) Hydraulic fracturing: the fuss, the facts, and the future. J Pet Technol 62(12):34–40. doi:10.2118/1210-0034-JPT

    Article  Google Scholar 

  • Benedetto MF, Berrone S, Borio A, Pieraccini S, Scialò S (2016a) A hybrid mortar virtual element method for discrete fracture network simulations. J Comput Phys 306:148–166. doi:10.1016/j.jcp.2015.11.034

    Article  Google Scholar 

  • Benedetto MF, Berrone S, Scialò S (2016b) A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem Anal Des 109:23–36. doi:10.1016/j.finel.2015.10.003

    Article  Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25(8):861–884. doi:10.1016/S0309-1708(02)00042-8

    Article  Google Scholar 

  • Berkowitz B, Hadad A (1997) Fractal and multifractal measures of natural and synthetic fracture networks. J Geophys Res Solid Earth (1978–2012) 102(B6):12205–12218. doi:10.1029/97JB00304

    Article  Google Scholar 

  • Berkowitz B, Zhou J (1996) Reactive solute transport in a single fracture. Water Resour Res 32(4):901–913. doi:10.1029/95WR03615

    Article  Google Scholar 

  • Bernabé Y, Wang Y, Qi T, Li M (2016) Passive advection‐dispersion in networks of pipes: effect of connectivity and relationship to permeability. J Geophys Res Solid Earth 121:713–728. doi:10.1002/2015JB012487

    Article  Google Scholar 

  • Bibby R (1981) Mass transport of solutes in dual‐porosity media. Water Resour Res 17(4):1075–1081. doi:10.1029/WR017i004p01075

    Article  Google Scholar 

  • Bidgoli MN, Zhao Z, Jing L (2013) Numerical evaluation of strength and deformability of fractured rocks. J Rock Mech Geotech Eng 5(6):419–430. doi:10.1016/j.jrmge.2013.09.002

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888. doi:10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • Bogdanov II, Mourzenko VV, Thovert JF, Adler PM (2003) Effective permeability of fractured porous media in steady state flow. Water Resour Res 39(1):13-1–13-16. doi:10.1029/2001WR000756

  • Bogdanov II, Mourzenko VV, Thovert JF, Adler PM (2007) Effective permeability of fractured porous media with power-law distribution of fracture sizes. Phys Rev E 76(3):036309. doi:10.1103/PhysRevE.76.036309

    Article  Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383. doi:10.1029/1999RG000074

    Article  Google Scholar 

  • Bour O, Davy P (1997) Connectivity of random fault networks following a power law fault length distribution. Water Resour Res 33(7):1567–1583. doi:10.1029/96WR00433

    Article  Google Scholar 

  • Bour O, Davy P (1998) On the connectivity of three‐dimensional fault networks. Water Resour Res 34(10):2611–2622

    Article  Google Scholar 

  • Boutt DF, Grasselli G, Fredrich JT, Cook BK, Williams JR (2006) Trapping zones: the effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophys Res Lett 33(21), L21402. doi:10.1029/2006GL027275

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci 17(5):241–251. doi:10.1016/0148-9062(80)90807-4

    Article  Google Scholar 

  • Brace WF (1984) Permeability of crystalline rocks: new in situ measurements. J Geophys Res Solid Earth (1978–2012) 89(B6):4327–4330. doi:10.1029/JB089iB06p04327

    Article  Google Scholar 

  • Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73(6):2225–2236. doi:10.1029/JB073i006p02225

    Article  Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res Solid Earth (1978–2012) 92(B2):1337–1347. doi:10.1029/JB092iB02p01337

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res Solid Earth (1978–2012) 90(B14):12575–12582. doi:10.1029/JB090iB14p12575

    Article  Google Scholar 

  • Brown GO, Hsieh HT, Lucero DA (2000) Evaluation of laboratory dolomite core sample size using representative elementary volume concepts. Water Resour Res 36(5):1199–1207. doi:10.1029/2000WR900017

    Article  Google Scholar 

  • Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough‐walled fractures: Navier‐Stokes, Stokes, and local cubic law simulations. Water Resour Res 39(4):1085. doi:10.1029/2002WR001346

    Article  Google Scholar 

  • Cacas MC, Ledoux E, Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation—1, the flow model. Water Resour Res 26(3):479–489. doi:10.1029/WR026i003p00491

    Google Scholar 

  • Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Env Res Risk A 27(2):505–516. doi:10.1007/s00477-012-0595-8

    Article  Google Scholar 

  • Cai J, Yu B, Zou M, Mei M (2010) Fractal analysis of invasion depth of extraneous fluids in porous media. Chem Eng Sci 65(18):5178–5186. doi:10.1016/j.ces.2010.06.013

    Article  Google Scholar 

  • Cai J, Perfect E, Cheng CL, Hu X (2014) Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18):5142–5151. doi:10.1021/la5007204

    Article  Google Scholar 

  • Cai J, Luo L, Ye R, Zeng X, Hu X (2015) Recent advances on fractal modeling of permeability for fibrous porous media. Fractals 23(01):1540006. doi:10.1142/S0218348X1540006X

    Article  Google Scholar 

  • Cappa F, Guglielmi Y, Fénart P, Merrien-Soukatchoff V, Thoraval A (2005) Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements. Int J Rock Mech Min Sci 42(2):287–306. doi:10.1016/j.ijrmms.2004.11.006

    Article  Google Scholar 

  • Chalhoub M, Pouya A (2008) Numerical homogenization of a fractured rock mass: a geometrical approach to determine the mechanical representative elementary volume. Electron J Geotech Eng 13:1–12

    Google Scholar 

  • Chang J, Yortsos YC (1990) Pressure transient analysis of fractal reservoirs. SPE Form Eval 5(01):31–38. doi:10.2118/18170-PA

    Article  Google Scholar 

  • Charlaix E, Guyon E, Roux S (1987) Permeability of a random array of fractures of widely varying apertures. Transp Porous Media 2(1):31–43

    Article  Google Scholar 

  • Chelidze T, Gueguen Y (1990) Evidence of fractal fracture. Int J Rock Mech Min Sci 27(3):223–225

    Article  Google Scholar 

  • Chen M, Bai M, Roegiers JC (1999) Permeability tensors of anisotropic fracture networks. Math Geol 31(4):335–373. doi:10.1023/A:1007534523363

    Article  Google Scholar 

  • Chen Y, Zhou C, Sheng Y (2007) Formulation of strain-dependent hydraulic conductivity for a fractured rock mass. Int J Rock Mech Min Sci 44(7):981–996. doi:10.1016/j.ijrmms.2006.12.004

    Article  Google Scholar 

  • Chen SH, Feng XM, Isam S (2008) Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method. Int J Numer Anal Methods Geomech 32(12):1459–1477. doi:10.1002/nag.679

    Article  Google Scholar 

  • Chen YF, Hu SH, Hu R, Zhou CB (2015a) Estimating hydraulic conductivity of fractured rocks from high‐pressure packer tests with an Izbash’s law‐based empirical model. Water Resour Res 51(4):2096–2118. doi:10.1002/2014WR016458

    Article  Google Scholar 

  • Chen YF, Liu MM, Hu SH, Zhou CB (2015b) Non-Darcy’s law-based analytical models for data interpretation of high-pressure packer tests in fractured rocks. Eng Geol 199:91–106. doi:10.1016/j.enggeo.2015.10.011

    Article  Google Scholar 

  • Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015c) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006. doi:10.1016/j.jhydrol.2015.09.021

    Article  Google Scholar 

  • Cheng Q (1997) Multifractal modeling and lacunarity analysis. Math Geol 29(7):919–932. doi:10.1023/A:1022355723781

    Article  Google Scholar 

  • Childs C, Walsh JJ, Watterson J (1990) A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations. In: North Sea Oil and Gas Reservoirs—II, Springer, Dordrecht, The Netherlands, pp 309–318. doi:10.1007/978-94-009-0791-1_26

  • Clauser C (1992) Permeability of crystalline rocks. Eos, Trans Am Geophys Union 73(21):233–238. doi:10.1029/91EO00190

    Article  Google Scholar 

  • Clifton RJ, Abou-Sayed AS (1979) On the computation of the three-dimensional geometry of hydraulic fractures. Symposium on Low Permeability Gas Reservoirs. Soc Pet Eng. doi:10.2118/7943-MS

    Google Scholar 

  • Cornet FH, Li L, Hulin JP, Ippolito I, Kurowski P (2003) The hydromechanical behaviour of a fracture: an in situ experimental case study. Int J Rock Mech Min Sci 40(7):1257–1270. doi:10.1016/S1365-1609(03)00120-5

    Article  Google Scholar 

  • Cowie PA, Scholz CH (1992a) Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J Struct Geol 14(10):1133–1148. doi:10.1016/0191-8141(92)90065-5

    Article  Google Scholar 

  • Cowie PA, Scholz CH (1992b) Displacement-length scaling relationship for faults: data synthesis and discussion. J Struct Geol 14(10):1149–1156. doi:10.1016/0191-8141(92)90066-6

    Article  Google Scholar 

  • Crandall D, Bromhal G, Karpyn ZT (2010) Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. Int J Rock Mech Min Sci 47(5):784–796. doi:10.1016/0191-8141(92)90065-5

    Article  Google Scholar 

  • Cueto‐Felgueroso L, Juanes R (2016) A discrete‐domain description of multiphase flow in porous media: rugged energy landscapes and the origin of hysteresis. Geophys Res Lett. doi:10.1002/2015GL067015

    Google Scholar 

  • Cvetkovic V, Painter S, Outters N, Selroos JO (2004) Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory. Water Resour Res 40(2), W02404. doi:10.1029/2003WR002655

    Article  Google Scholar 

  • Davy P (1993) On the frequency-length distribution of the San Andreas fault system. J Geophys Res 98(B7):12141–12151. doi:10.1029/93JB00372

    Article  Google Scholar 

  • Davy P, Bour O, De Dreuzy JR, Darcel C (2006) Flow in multiscale fractal fracture networks. Geol Soc Lond Spec Publ 261(1):31–45. doi:10.1144/GSL.SP.2006.261.01.03

    Article  Google Scholar 

  • Dawers NH, Anders MH, Scholz CH (1993) Growth of normal faults: displacement-length scaling. Geology 21(12):1107–1110. doi:10.1130/0091-7613(1993)021<1107:GONFDL>2.3.CO

    Article  Google Scholar 

  • De Dreuzy JR, Davy P, Bour O (2001a) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. effective connectivity. Water Resour Res 37(8):2065–2078. doi:10.1029/2001WR900011

    Article  Google Scholar 

  • De Dreuzy JR, Davy P, Bour O (2001b) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. permeability of networks based on lognormal distribution of apertures. Water Resour Res 37(8):2079–2095. doi:10.1029/2001WR900010

    Article  Google Scholar 

  • De Dreuzy JR, Davy P, Bour O (2002) Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour Res 38(12):1276. doi:10.1029/2001WR001009

    Article  Google Scholar 

  • De Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res 40(1). doi:10.1029/2003WR002260

  • De Dreuzy JR, Méheust Y, Pichot G (2012) Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN). J Geophys Res: Solid Earth (1978–2012) 117(B11). doi:10.1029/2012JB009461

  • De Dreuzy JR, Pichot G, Poirriez B, Erhel J (2013) Synthetic benchmark for modeling flow in 3D fractured media. Comput Geosci-UK 50:59–71. doi:10.1016/j.cageo.2012.07.025

    Article  Google Scholar 

  • Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models. Rock Mech Rock Eng 21(1):21–51. doi:10.1007/BF01019674

    Article  Google Scholar 

  • Dershowitz WS, Fidelibus C (1999) Derivation of equivalent pipe network analogues for three‐dimensional discrete fracture networks by the boundary element method. Water Resour Res 35(9):2685–2691. doi:10.1029/1999WR900118

    Article  Google Scholar 

  • Develi K, Babadagli T (1998) Quantification of natural fracture surfaces using fractal geometry. Math Geol 30(8):971–998. doi:10.1023/A:1021781525574

    Article  Google Scholar 

  • Drazer G, Koplik J (2000) Permeability of self-affine rough fractures. Phys Rev E 62(6):8076. doi:10.1103/PhysRevE.62.8076

    Article  Google Scholar 

  • Du S, Hu Y, Hu X (2009) Measurement of joint roughness coefficient by using profilograph and roughness ruler. J Earth Sci 20(5):890–896

    Article  Google Scholar 

  • Dubuc B, Quiniou JF, Roques-Carmes C, Tricot C, Zucker SW (1989) Evaluating the fractal dimension of profiles. Phys Rev A 39(3):1500. doi:10.1103/PhysRevA.39.1500

    Article  Google Scholar 

  • Durlofsky LJ (1991) Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour Res 27(5):699–708. doi:10.1029/91WR00107

    Article  Google Scholar 

  • Dverstorp B, Andersson J (1989) Application of the discrete fracture network concept with field data: possibilities of model calibration and validation. Water Resour Res 25(3):540–550. doi:10.1029/WR025i003p00540

    Article  Google Scholar 

  • Einstein HH, Baecher GB (1983) Probabilistic and statistical methods in engineering geology. Rock Mech Rock Eng 16(1):39–72. doi:10.1007/BF01030217

    Article  Google Scholar 

  • Elsworth D, Bai M (1992) Flow-deformation response of dual-porosity media. J Geotech Eng 118(1):107–124. doi:10.1061/(ASCE)0733-9410(1992)118:1(107)

    Article  Google Scholar 

  • Englman R, Gur Y, Jaeger Z (1983) Fluid flow through a crack network in rocks. J Appl Mech 50(4a):707–711. doi:10.1115/1.3167133

    Article  Google Scholar 

  • Erhel J, De Dreuzy JR, Poirriez B (2009) Flow simulation in three-dimensional discrete fracture networks. SIAM J Sci Comput 31(4):2688–2705. doi:10.1137/080729244

    Article  Google Scholar 

  • Esaki T, Du S, Mitani Y, Ikusada JL (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Min Sci 36(5):641–650. doi:10.1016/S0148-9062(99)00044-3

    Article  Google Scholar 

  • Esmaieli K, Hadjigeorgiou J, Grenon M (2010) Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine. Int J Rock Mech Min Sci 47(6):915–926. doi:10.1016/j.ijrmms.2010.05.010

    Article  Google Scholar 

  • Farahmand K, Baghbanan A, Shahriar K, Diederichs M S (2015) Effect of fracture dilation angle on stress-dependent permeability tensor of fractured rock. Proceeding of the 49th US Rock Mechanics/Geomechanics Symposium, ARMA 15-542, San Francisco, July 2015

  • Fossen H, Hesthammer J (1997) Geometric analysis and scaling relations of deformation bands in porous sandstone. J Struct Geol 19(12):1479–1493. doi:10.1016/S0191-8141(97)00075-8

    Article  Google Scholar 

  • Gale SJ (1984) The hydraulics of conduit flow in carbonate aquifers. J Hydrol 70(1):309–327. doi:10.1016/0022-1694(84)90129-X

    Article  Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci 15(5):249–257. doi:10.1016/0148-9062(78)90957-9

    Article  Google Scholar 

  • Germanovich LN, Salganik RL, Dyskin AV, Lee KK (1994) Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Appl Geophys 143(1–3):117–149. doi:10.1007/BF00874326

    Article  Google Scholar 

  • Gerritsen MG, Durlofsky LJ (2005) Modeling fluid flow in oil reservoirs. Annu Rev Fluid Mech 37:211–238. doi:10.1146/annurev.fluid.37.061903.175748

    Article  Google Scholar 

  • Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20(8):1441–1461. doi:10.1007/s10040-012-0897-4

    Article  Google Scholar 

  • Gillespie PA, Walsh JJ, Watterson J (1992) Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation. J Struct Geol 14(10):1157–1172. doi:10.1016/0191-8141(92)90067-7

    Article  Google Scholar 

  • González PJ, Tiampo KF, Palano M, Cannavó F, Fernández J (2012) The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat Geosci 5(11):821–825. doi:10.1038/NGEO1610

    Article  Google Scholar 

  • Gonzalez‐Garcia R, Huseby O, Thovert JF, Ledeert B, Adler PM (2000) Three‐dimensional characterization of a fractured granite and transport properties. Int J Rock Mech Min Sci Solid Earth (1978–2012) 105(B9):21387–21401. doi:10.1029/2000JB900149

    Google Scholar 

  • Goodman RE (1976) Methods of geological engineering in discontinuous rocks. West, New York

    Google Scholar 

  • Grant MA, Donaldson IG, Bixley PF (1983) Geothermal reservoir engineering. Academic, New York

    Google Scholar 

  • Gudmundsson A (1987) Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland. Tectonophysics 139(3):295–308. doi:10.1016/0040-1951(87)90103-X

    Article  Google Scholar 

  • Gueguen Y, Dienes J (1989) Transport properties of rocks from statistics and percolation. Math Geol 21(1):1–13. doi:10.1007/BF00897237

    Article  Google Scholar 

  • Guha Roy D, Singh TN (2015) Fluid flow through rough rock fractures: parametric study. Int J Geomech 04015067. doi:10.1061/(ASCE)GM.1943-5622.0000522

  • Guo L, Li X, Zhou Y, Zhang Y (2015a) Generation and verification of three-dimensional network of fractured rock masses stochastic discontinuities based on digitalization. Environ Earth Sci 73(11):7075–7088. doi:10.1007/s12665-015-4175-3

    Article  Google Scholar 

  • Guo L, Li X, Zhou Y, Zhang Y, Suo P, Tu C (2015b) Simulation of random 3D discontinuities network based on digitalization and its validation test. Chin J Rock Mech Eng 34:2854–2861. doi:10.13722/j.cnki.jrme.2014.0463, in Chinese

    Google Scholar 

  • Guvanasen V, Chan T (2000) A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass. Int J Rock Mech Min Sci 37(1):89–106. doi:10.1016/S1365-1609(99)00095-7

    Article  Google Scholar 

  • Hakami E (1995) Aperture distribution of rock fractures. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

  • Hans J, Boulon M (2003) A new device for investigating the hydro‐mechanical properties of rock joints. Int J Numer Anal Methods Geomech 27(6):513–548. doi:10.1002/nag.285

    Article  Google Scholar 

  • Hatton CG, Main IG, Meredith PG (1994) Non-universal of fracture length and opening displacement. Nature 367:160–162. doi:10.1038/367160a0

    Article  Google Scholar 

  • Haugen Å, Fernø MA, Graue A, Bertin HJ (2012) Experimental study of foam flow in fractured oil-wet limestone for enhanced oil recovery. SPE Reserv Eval Eng 15(02):218–228. doi:10.2118/129763-PA

    Article  Google Scholar 

  • Hayashi M, Fujiwara G (1965) Anisotropy of shear resistance and dilatancy of joint mass and some mechanisms of fracture in direct shear (in Japanese). In: Proceedings of the 3rd Japan Symposium on Rock Mechanics, Committee on Rock Mechanics, JSMS, Tokyo, pp 17–21

  • Hestir K, Long J (1990) Analytical expressions for the permeability of random two‐dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories. J Geophys Res Solid Earth (1978–2012) 95(B13):21565–21581. doi:10.1029/JB095iB13p21565

    Article  Google Scholar 

  • Hoek E, Bieniawski ZT (1965) Brittle fracture propagation in rock under compression. Int J Fract Mech 1(3):137–155. doi:10.1007/BF00186851

    Google Scholar 

  • Hsieh PA, Neuman SP (1985) Field determination of the three‐dimensional hydraulic conductivity tensor of anisotropic media: 1. theory. Water Resour Res 21(11):1655–1665. doi:10.1029/WR021i011p01655

    Article  Google Scholar 

  • Hubbert KM, Willis DG (1957) Mechanics of hydraulic fracturing. Trans Am Inst Min Metall Eng 210:153–163

    Google Scholar 

  • Hudson JA, Priest SD (1983) Discontinuity frequency in rock masses. Int J Rock Mech Min Sci 20(2):73–89. doi:10.1016/0148-9062(83)90329-7

    Article  Google Scholar 

  • Hyman JD, Karra S, Makedonska N, Gable CW, Painter SL, Viswanathan HS (2015) DFNWorks: a discrete fracture network framework for modeling subsurface flow and transport. Comput Geosci-UK 84:10–19. doi:10.1016/j.cageo.2015.08.001

    Article  Google Scholar 

  • Indraratna B, Thirukumaran S, Brown ET, Zhu SP (2015) Modeling the shear behaviour of rock joints with asperity damage under constant normal stiffness. Rock Mech Rock Eng 48(1):179–195. doi:10.1007/s00603-014-0556-2

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Ishibashi T, Watanabe N, Hirano N, Okamoto A, Tsuchiya N (2012) GeoFlow: a novel model simulator for prediction of the 3‐D channeling flow in a rock fracture network. Water Resour Res 48(7), W07601. doi:10.1029/2011WR011226

    Article  Google Scholar 

  • Ivanova VM, Sousa R, Murrihy B, Einstein HH (2014) Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems. Comput Geosci-UK 67:100–109. doi:10.1016/j.cageo.2013.12.004

    Article  Google Scholar 

  • Ivars DM (2006) Water inflow into excavations in fractured rock: a three-dimensional hydro-mechanical numerical study. Int J Rock Mech Min Sci 43(5):705–725. doi:10.1016/j.ijrmms.2005.11.009

    Article  Google Scholar 

  • Iwai K (1976) Fundamental studies of fluid flow through a single fracture. PhD Thesis, University of California, Berkeley

  • Jafari A, Babadagli T (2008) A sensitivity analysis for effective parameters on fracture network permeability. SPE 113618. In: Proceedings of the Western Regional and Pacific Section AAPG Joint Meeting. Bakersfield CA, 31 March–2 April 2008. doi:10.2118/113618-MS

  • Jafari A, Babadagli T (2009) A sensitivity analysis for effective parameters on 2-D fracture network permeability. SPE Res Eval Eng 12:455–469. doi:10.2118/113618-PA

    Google Scholar 

  • Jafari A, Babadagli T (2011) Effective fracture network permeability of geothermal reservoirs. Geothermics 40(1):25–38. doi:10.1016/j.geothermics.2010.10.003

    Article  Google Scholar 

  • Jafari A, Babadagli T (2012) Estimation of equivalent fracture network permeability using fractal and statistical network properties. J Petrol Sci Eng 92:110–123. doi:10.1016/j.petrol.2012.06.007

    Article  Google Scholar 

  • Jafari A, Babadagli T (2013) Relationship between percolation–fractal properties and permeability of 2-D fracture networks. Int J Rock Mech Min Sci 60:353–362. doi:10.1016/j.ijrmms.2013.01.007

    Google Scholar 

  • Javadi M, Sharifzadeh M, Shahriar K (2010) A new geometrical model for non-linear fluid flow through rough fractures. J Hydrol 389(1):18–30. doi:10.1016/j.jhydrol.2010.05.010

    Article  Google Scholar 

  • Javadi M, Sharifzadeh M, Shahriar K, Mitani Y (2014) Critical Reynolds number for nonlinear flow through rough‐walled fractures: the role of shear processes. Water Resour Res 50(2):1789–1804. doi:10.1002/2013WR014610

    Article  Google Scholar 

  • Jha B, Juanes R (2014) Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour Res 50(5):3776–3808. doi:10.1002/2013WR015175

    Article  Google Scholar 

  • Jiang Y, Xiao J, Tanabashi Y, Mozokami T (2004) Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition. Int J Rock Mech Min Sci 41(2):275–286. doi:10.1016/j.ijrmms.2003.08.004

    Article  Google Scholar 

  • Jiang Y, Li B, Tanabashi Y (2006a) Estimating the relation between surface roughness and mechanical properties of rock joints. Int J Rock Mech Min Sci 43(6):837–846. doi:10.1016/j.ijrmms.2005.11.013

    Article  Google Scholar 

  • Jiang Y, Tanabashi Y, Li B, Xiao J (2006b) Influence of geometrical distribution of rock joints on deformational behavior of underground opening. Tunn Undergr Sp Tech 21(5):485–491. doi:10.1016/j.tust.2005.10.004

    Article  Google Scholar 

  • Jiang Y, Li B, Wang G, Li S (2008) New advances in experimental study on seepage characteristics of rock fractures (in Chinese). Chin J Rock Mech Eng 27(12):2377–2386

    Google Scholar 

  • Jing L (2003) A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40(3):283–353. doi:10.1016/S1365-1609(03)00013-3

    Article  Google Scholar 

  • Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering. Elsevier, Oxford

    Google Scholar 

  • Jing L, Min K B, Baghbanan A (2009) Stress and scale-dependency of hydromechanical properties of fractured rocks. In: Abbie M, Bedford JS (eds) Rock mechanics. Nova. www.novapublishers.com/catalog/index.php. Accessed June 2016

  • Johnson J, Brown S (2001) Experimental mixing variability in intersecting natural fractures. Geophys Res Lett 28(22):4303–4306. doi:10.1029/2001GL013446

    Article  Google Scholar 

  • Johnson J, Brown S, Stockman H (2006) Fluid flow and mixing in rough‐walled fracture intersections. J Geophys Res: Solid Earth (1978–2012) 111(B12). doi:10.1029/2005JB004087

  • Juanes R, Tchelepi HA (2008) Special issue on multiscale methods for flow and transport in heterogeneous porous media. Comput Geosci 12(3):255–256. doi:10.1002/nme.491

    Article  Google Scholar 

  • Juanes R, Samper J, Molinero J (2002) A general and efficient formulation of fractures and boundary conditions in the finite element method. Int J Numer Methods Eng 54(12):1751–1774. doi:10.1002/nme.491

    Article  Google Scholar 

  • Juanes R, Spiteri EJ, Orr FM, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42(12). doi:10.1029/2005WR004806

  • Juanes R, MacMinn CW, Szulczewski ML (2010) The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp Porous Med 82(1):19–30. doi:10.1007/s11242-009-9420-3

    Article  Google Scholar 

  • Kalbacher T, Mettier R, McDermott C, Wang W, Kosakowski G, Taniguchi T, Kolditz O (2007) Geometric modeling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel Rock Laboratory. Comput Geosci 11(1):9–26. doi:10.1007/s10596-006-9032-8

    Article  Google Scholar 

  • Kang PK, Dentz M, Le Borgne T, Juanes R (2015) Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections. Phys Rev E 92(2):022148. doi:10.1103/PhysRevE.92.022148

    Article  Google Scholar 

  • Kang PK, Zheng Y, Fang X, Wojcik R, McLaughlin D, Brown S, Fehler MC, Burns DR, Juanes R (2016) Sequential approach to joint flow: seismic inversion for improved characterization of fractured media. Water Resour Res. doi:10.1002/2015WR017412

    Google Scholar 

  • Kawamoto T (1970) Macroscopic shear failure of jointed and layered brittle media. In: Proceedings of the 2nd Congress International Society for Rock Mechanics, vol 2. Belgrade, September 1970, pp 215–212

  • Khaleel R (1989) Scale dependence of continuum models for fractured basalts. Water Resour Res 25(8):1847–1855. doi:10.1029/WR025i008p01847

    Article  Google Scholar 

  • Khamforoush M, Shams K, Thovert JF, Adler PM (2008) Permeability and percolation of anisotropic three-dimensional fracture networks. Phys Rev E 77(5):056307. doi:10.1103/PhysRevE.77.056307

    Article  Google Scholar 

  • Kilmer NH, Morrow NR, Pitman JK (1987) Pressure sensitivity of low permeability sandstones. J Petrol Sci Eng 1(1):65–81. doi:10.1016/0920-4105(87)90015-5

    Article  Google Scholar 

  • Kim YS, Sanderson DJ (2005) The relationship between displacement and length of faults: a review. Earth-Sci Rev 68(3):317–334. doi:10.1016/j.earscirev.2004.06.003

    Article  Google Scholar 

  • Kirkpatrick S (1971) Classical transport in disordered media: scaling and effective-medium theories. Phys Rev Lett 27(25):1722. doi:10.1103/PhysRevLett.27.1722

    Article  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574. doi:10.1103/RevModPhys.45.574

    Article  Google Scholar 

  • Klimczak C, Schultz RA, Parashar R, Reeves DM (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18(4):851–862. doi:10.1007/s10040-009-0572-6

    Article  Google Scholar 

  • Kohl T, Evans KF, Hopkirk RJ, Jung R (1997) Observation and simulation of non‐Darcian flow transients in fractured rock. Water Resour Res 33(3):407–418. doi:10.1029/96WR03495

    Article  Google Scholar 

  • Kolyukhin D, Torabi A (2012) Statistical analysis of the relationships between faults attributes. J Geophys Res: Solid Earth (1978–2012) 117(B5). doi:10.1029/2011JB008880

  • Kolyukhin D, Torabi A (2013) Power-law testing for fault attributes distributions. Pure Appl Geophys 170(12):2173–2183. doi:10.1007/s00024-013-0644-3

    Article  Google Scholar 

  • Kosakowski G, Berkowitz B (1999) Flow pattern variability in natural fracture intersections. Geophys Res Lett 26(12):1765–1768. doi:10.1029/1999GL900344

    Article  Google Scholar 

  • Koudina N, Garcia RG, Thovert JF, Adler PM (1998) Permeability of three-dimensional fracture networks. Phys Rev E 57(4):4466. doi:10.1103/PhysRevE.57.4466

    Article  Google Scholar 

  • Koyama T, Fardin N, Jing L, Stephansson O (2006) Numerical simulation of shear-induced flow anisotropy and scale-dependent aperture and transmissivity evolution of rock fracture replicas. Int J Rock Mech Min Sci 43(1):89–106. doi:10.1016/j.ijrmms.2005.04.006

    Article  Google Scholar 

  • Koyama T, Li B, Jiang Y, Jing L (2008a) Coupled shear-flow tests for rock fractures with visualization of the fluid flow and their numerical simulations. Int J Geotech Eng 2(3):215–227. doi:10.3328/IJGE.2008.02.03.215-227

    Article  Google Scholar 

  • Koyama T, Neretnieks I, Jing L (2008b) A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear. Int J Rock Mech Min Sci 45(7):1082–1101. doi:10.1016/j.ijrmms.2007.11.006

    Article  Google Scholar 

  • Kruhl JH (2013) Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy. J Struct Geol 46:2–21. doi:10.1016/j.jsg.2012.10.002

    Article  Google Scholar 

  • Kulatilake P, Panda BB (2000) Effect of block size and joint geometry on jointed rock hydraulics and REV. J Eng Mech 126(8):850–858. doi:10.1061/(ASCE)0733-9399(2000)126:8(850)

    Article  Google Scholar 

  • Kulatilake P, Shou G, Huang TH, Morgan RM (1995) New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci 32(7):673–697. doi:10.1016/0148-9062(95)00022-9

    Article  Google Scholar 

  • Lang PS, Paluszny A, Zimmerman RW (2014) Permeability tensor of three‐dimensional fractured porous rock and a comparison to trace map predictions. J Geophys Res Solid Earth 119(8):6288–6307. doi:10.1002/2014JB011027

    Article  Google Scholar 

  • Latham JP, Xiang J, Belayneh M, Nick HM, Tsang CF, Blunt MJ (2013) Modeling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int J Rock Mech Min Sci 57:100–112. doi:10.1016/j.ijrmms.2012.08.002

    Google Scholar 

  • Leary PC, Henyey TL (1985) Anisotropy and fracture zones about a geothermal well from P-wave velocity profiles. Geophysics 50(1):25–36. doi:10.1190/1.1441833

    Article  Google Scholar 

  • Lei Q, Latham JP, Xiang J, Tsang CF, Lang P, Guo L (2014) Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock. Int J Rock Mech Min Sci 70:507–523. doi:10.1016/j.ijrmms.2014.06.001

    Google Scholar 

  • Lei Q, Latham JP, Tsang CF, Xiang J, Lang P (2015a) A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics. J Geophys Res Solid Earth 120(7):4784–4807. doi:10.1002/2014JB011736

    Article  Google Scholar 

  • Lei Q, Latham JP, Xiang J, Tsang CF (2015b) Polyaxial stress-induced variable aperture model for persistent 3D fracture networks. Geomech Energ Environ 1:34–47. doi:10.1016/j.gete.2015.03.003

    Article  Google Scholar 

  • Leung CTO, Zimmerman RW (2012) Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties. Transp Porous Med 93(3):777–797. doi:10.1007/s11242-012-9982-3

    Article  Google Scholar 

  • Lever DA, Bradbury MH, Hemingway SJ (1985) The effect of dead-end porosity on rock-matrix diffusion. J Hydrol 80(1):45–76. doi:10.1016/0022-1694(85)90074-5

    Article  Google Scholar 

  • Li B, Jiang Y (2013) Quantitative estimation of fluid flow mechanism in rock fracture taking into account the influences of JRC and Reynolds number (in Japanese). J MMIJ 129(7):479–484

    Article  Google Scholar 

  • Li B, Jiang Y, Koyama T, Jing L, Tanabashi Y (2008) Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Int J Rock Mech Min Sci 45(3):362–375. doi:10.1016/j.ijrmms.2007.06.004

    Article  Google Scholar 

  • Li B, Jiang Y, Mizokami T, Ikusada K, Mitani Y (2014) Anisotropic shear behavior of closely jointed rock masses. Int J Rock Mech Min Sci 71:258–271. doi:10.1016/j.ijrmms.2014.07.013

    Google Scholar 

  • Li B, Liu R, Jiang Y (2016) Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. J Hydrol 538:440–453. doi:10.1016/j.jhydrol.2016.04.053

    Article  Google Scholar 

  • Li J, Huang Q, Ren X (2013) Dynamic initiation and propagation of multiple cracks in brittle materials. Materials 6(8):3241–3253. doi:10.3390/ma6083241

    Article  Google Scholar 

  • Li JH, Zhang LM (2010) Geometric parameters and REV of a crack network in soil. Comput Geotech 37(4):466–475. doi:10.1016/j.compgeo.2010.01.006

    Article  Google Scholar 

  • Li L, Yu B (2013) Fractal analysis of the effective thermal conductivity of biological media embedded with randomly distributed vascular trees. Int J Heat Mass Tran 67:74–80. doi:10.1016/j.ijheatmasstransfer.2013.08.003

    Article  Google Scholar 

  • Li L, Lei T, Li S, Zhang Q, Xu Z, Shi S, Zhou Z (2014a) Risk assessment of water inrush in karst tunnels and software development. Arab J Geosci 8(4):1843–1854. doi:10.1007/s12517-014-1365-3

    Article  Google Scholar 

  • Li L, Wang Q, Li S, Huang H, Shi S, Wang K, Lei T, Chen D (2014b) Cause analysis of soft and hard rock tunnel collapse and information management. Pol J Environ Stud 23(4):1227–1233

    Google Scholar 

  • Li LP, Zhou ZQ, Li SC, Xu Z, Shi S (2014c) An attribute synthetic evaluation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34(3):288–294. doi:10.1007/s10230-014-0318-0

    Article  Google Scholar 

  • Li SC, Xu ZH, Ma GW, Yang WM (2014d) An adaptive mesh refinement method for a medium with discrete fracture network: the enriched Persson’s method. Finite Elem Anal Des 86:41–50. doi:10.1016/j.finel.2014.03.008

    Article  Google Scholar 

  • Li Y, Huang R (2015) Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces. Int J Rock Mech Min Sci 75:15–22. doi:10.1016/j.ijrmms.2015.01.007

    Google Scholar 

  • Liu R, Jiang Y, Li B, Wang X (2015) A fractal model for charactering fluid flow in fractured rock masses on randomly distributed rock fracture networks. Comput Geotech 65:45–55. doi:10.1016/j.compgeo.2014.11.004

    Article  Google Scholar 

  • Liu R, Jiang Y, Li B (2016a) Effects of intersection and dead-end of fractures on fluid flow and particle transport in rock fracture networks. Geosci J. doi:10.1007/s12303-015-0057-7

    Google Scholar 

  • Liu R, Li B, Jiang Y (2016b) Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of intersections. Adv Water Resour 88:53–65. doi:10.1016/j.advwatres.2015.12.002

    Article  Google Scholar 

  • Liu R, Li B, Jiang Y (2016c) A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks. Comput Geotech 75:57–68. doi:10.1016/j.compgeo.2016.01.025

    Article  Google Scholar 

  • Lomize G (1951) Fluid flow in fissured formation (in Russian). Moskva, Leninggrad

  • Long J, Billaux DM (1987) From field data to fracture network modeling: an example incorporating spatial structure. Water Resour Res 23(7):1201–1216. doi:10.1029/WR023i007p01201

    Article  Google Scholar 

  • Long J, Witherspoon PA (1985) The relationship of the degree of interconnection to permeability in fracture networks. J Geophys Res Solid Earth (1978–2012) 90(B4):3087–3098. doi:10.1029/JB090iB04p03087

    Article  Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658. doi:10.1029/WR018i003p00645

    Article  Google Scholar 

  • Louis C (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Imperial College of Science and Technology, London

  • Ma J (2015) Review of permeability evolution model for fractured porous media. J Rock Mech Geotech Eng 351–357. doi:10.1016/j.jrmge.2014.12.003

  • MacMinn CW, Szulczewski ML, Juanes R (2010) CO2 migration in saline aquifers, part 1: capillary trapping under slope and groundwater flow. J Fluid Mech 662:329–351. doi:10.1017/S0022112010003319

    Article  Google Scholar 

  • MacQuarrie KTB, Mayer KU (2005) Reactive transport modeling in fractured rock: a state-of-the-science review. Earth-Sci Rev 72(3):189–227. doi:10.1016/j.earscirev.2005.07.003

    Article  Google Scholar 

  • Maerz NH, Franklin JA, Bennett CP (1990) Joint roughness measurement using shadow profilometry. Int J Rock Mech Min Sci 27(5):329–343. doi:10.1016/0148-9062(90)92708-M

    Article  Google Scholar 

  • Maghous S, Bernaud D, Fréard J, Garnier D (2008) Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis. Int J Rock Mech Min Sci 45(8):1273–1286. doi:10.1016/j.ijrmms.2008.01.008

    Article  Google Scholar 

  • Makedonska N, Painter SL, Bui QM, Gable CW (2015) Particle tracking approach for transport in three-dimensional discrete fracture networks. Comput Geosci-UK 19(5):1123–1137. doi:10.1007/s10596-015-9525-4

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature, vol. 15. Freeman, San Francisco

  • Margolin G, Berkowitz B, Scher H (1998) Structure, flow, and generalized conductivity scaling in fracture networks. Water Resour Res 34(9):2103–2121. doi:10.1029/98WR01648

    Article  Google Scholar 

  • Meheust Y, De Dreuzy J, Pichot G (2011) Influence of fracture scale heterogeneity on the flow properties of 3D discrete fracture networks (DFN). AGU Fall Meeting Abstracts 1:02

    Google Scholar 

  • Miao T, Yu B, Duan Y, Fang Q (2014) A fractal model for spherical seepage in porous media. Int Commun Heat Mass 58:71–78. doi:10.1016/j.icheatmasstransfer.2014.08.023

    Article  Google Scholar 

  • Miao T, Yang S, Long Z, Yu B (2015a) Fractal analysis of permeability of dual-porosity media embedded with random fractures. Int J Heat Mass Tran 88:814–821. doi:10.1016/j.ijheatmasstransfer.2015.05.004

    Article  Google Scholar 

  • Miao T, Yu B, Duan Y, Fang Q (2015b) A fractal analysis of permeability for fractured rocks. Int J Heat Mass Trans 81:75–80. doi:10.1016/j.ijheatmasstransfer.2014.10.010

    Article  Google Scholar 

  • Min KB, Jing L (2003) Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int J Rock Mech Min Sci 40(6):795–816. doi:10.1016/S1365-1609(03)00038-8

    Article  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing L (2004) Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci 41(7):1191–1210. doi:10.1016/j.ijrmms.2004.05.005

    Google Scholar 

  • Mora P, Wang Y, Alonso-Marroquin F (2015) Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems: a tool to study creation of fluid flow networks for viable deep geothermal energy. J Earth Sci 26(1):11–19. doi:10.1007/s12583-015-0516-0

    Article  Google Scholar 

  • Moreno L, Rasmuson A (1986) Contaminant transport through a fractured porous rock: impact of the inlet boundary condition on the concentration profile in the rock matrix. Water Resour Res 22(12):1728–1730. doi:10.1029/WR022i012p01728

    Article  Google Scholar 

  • Moreno L, Tsang YW, Tsang CF, Hale FV, Neretniekes I (1988) Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour Res 24(12):2033–2048. doi:10.1029/WR024i012p02033

    Article  Google Scholar 

  • Mourzenko VV, Thovert JF, Adler PM (2011) Permeability of isotropic and anisotropic fracture networks, from the percolation threshold to very large densities. Phys Rev E 84(3):036307. doi:10.1103/PhysRevE.84.036307

    Article  Google Scholar 

  • Murphy H, Huang C, Dash Z, Zyvoloski G (2004) Semianalytical solutions for fluid flow in rock joints with pressure‐dependent openings. Water Resour Res 40(12), W12506. doi:10.1029/2004WR003005

    Article  Google Scholar 

  • Mustapha H, Mustapha K (2007) A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J Sci Comput 29(4):1439–1459. doi:10.1137/060653482

    Article  Google Scholar 

  • Myers NO (1962) Characterization of surface roughness. Wear 5:182–189. doi:10.1016/0043-1648(62)90002-9

    Article  Google Scholar 

  • Nagayama I, Katahira H (1989) Shear test of gypsum modeling stratiform rock (in Japanese). Civ Eng J 31:25–30

    Google Scholar 

  • Nagayama I, Norimatsu H, Katahira H, Ozawa Y, Morita S (1994) Influences of dip and shearing strength of joints on shearing strength of rock mass (in Japanese). In: Proceedings of the 9th Japan Symposium on Rock Mechanics, Committee on Rock Mechanics, JSMS, Tokyo, pp 391–396

  • Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85(B8):4379–4397. doi:10.1029/JB085iB08p04379

    Article  Google Scholar 

  • Neuman SP (1994) Generalized scaling of permeabilities: validation and effect of support scale. Geophys Res Lett 21(5):349–352. doi:10.1029/94GL00308

    Article  Google Scholar 

  • Neuzil CE (1986) Groundwater flow in low‐permeability environments. Water Resour Res 22(8):1163–1195. doi:10.1029/WR022i008p01163

    Article  Google Scholar 

  • Neuzil CE, Tracy JV (1981) Flow through fractures. Water Resour Res 17(1):191–199. doi:10.1029/WR017i001p00191

    Article  Google Scholar 

  • Nolte DD, Pyrak-Nolte LJ, Cook NGW (1989) The fractal geometry of flow paths in natural fractures in rock and the approach to percolation. Pure Appl Geophys 131(1–2):111–138. doi:10.1007/BF00874483

    Article  Google Scholar 

  • Nur A (1971) Effects of stress on velocity anisotropy in rocks with cracks. J Geophys Res 76(8):2022–2034. doi:10.1029/JB076i008p02022

    Article  Google Scholar 

  • O’Malley D, Karra S, Currier RP, Makedonska N, Hyman JD (2015) Where does water go during hydraulic fracturing? Groundwater. doi:10.1111/gwat.12380

    Google Scholar 

  • Oda M (1985) Permeability tensor for discontinuous rock masses. Geotechnique 35(4):483–495. doi:10.1680/geot.1985.35.4.483

    Article  Google Scholar 

  • Oda M (1988) A method for evaluating the representative elementary volume based on joint survey of rock masses. Can Geotech J 25(3):440–447. doi:10.1139/t88-049

    Article  Google Scholar 

  • Oda M, Hatsuyama Y, Ohnishi Y (1987) Numerical experiments on permeability tensor and its application to jointed granite at Stripa Mine, Sweden. J Geophys Res Solid Earth (1978–2012) 92(B8):8037–8048. doi:10.1029/JB092iB08p08037

    Article  Google Scholar 

  • Odling NE (1994) Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech Rock Eng 27(3):135–153. doi:10.1007/BF01020307

    Article  Google Scholar 

  • Olson JE (2003) Sublinear scaling of fracture aperture versus length: an exception or the rule? J Geophys Res: Solid Earth (1978–2012) 108(B9). doi:10.1029/2001JB000419

  • Olson JE (2004) Predicting fracture swarms: the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geol Soc Lond Spec Publ 231(1):73–88. doi:10.1144/GSL.SP.2004.231.01.05

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38(3):317–329. doi:10.1016/S1365-1609(00)00079-4

    Article  Google Scholar 

  • Parashar R, Reeves DM (2012) On iterative techniques for computing flow in large two-dimensional discrete fracture networks. J Comput Appl Math 236(18):4712–4724. doi:10.1016/j.cam.2012.02.038

    Article  Google Scholar 

  • Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Fluids Eng 85(4):528–533. doi:10.1115/1.3656900

    Google Scholar 

  • Paris PC, Sih GC (1965) Stress analysis of cracks, fracture toughness testing and its applications. ASTM-STP, West Conshohocken, PA, pp 30–81

  • Park YJ, Dreuzy JR, Lee KK, Berkowitz B (2001) Transport and intersection mixing in random fracture networks with power law length distributions. Water Resour Res 37(10):2493–2501. doi:10.1029/2000WR000131

    Article  Google Scholar 

  • Park YJ, Lee KK, Kosakowski G, Berkowitz B (2003) Transport behavior in three‐dimensional fracture intersections. Water Resour Res 39(8):1-1–1-9. doi:10.1029/2002WR001801

  • Patir N, Cheng HS (1978) An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J Tribol 100(1):12–17. doi:10.1115/1.3453103

    Google Scholar 

  • Pollard DD, Segall P (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. Fract Mech Rock 277(349):277–349

    Article  Google Scholar 

  • Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci 13(5):135–148. doi:10.1016/0148-9062(76)90818-4

    Article  Google Scholar 

  • Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci 18(3):183–197. doi:10.1016/0148-9062(81)90973-6

    Article  Google Scholar 

  • Pruess K, Wang JSY, Tsang YW (1990) On thermohydrologic conditions near high‐level nuclear wastes emplaced in partially saturated fractured tuff: 1. simulation studies with explicit consideration of fracture effects. Water Resour Res 26(6):1235–1248. doi:10.1029/WR026i006p01235

    Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37(1):245–262. doi:10.1016/S1365-1609(99)00104-5

    Article  Google Scholar 

  • Rasmuson A, Neretnieks I (1981) Migration of radionuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. J Geophys Res 86(B5):3749–3758. doi:10.1029/JB086iB05p03749

    Article  Google Scholar 

  • Rasouli V, Hosseinian A (2011) Correlations developed for estimation of hydraulic parameters of rough fractures through the simulation of JRC flow channels. Rock Mech Rock Eng 44(4):447–461. doi:10.1007/s00603-011-0148-3

    Article  Google Scholar 

  • Reeves DM, Parashar R, Pohll G, Carroll R, Badger T, Willoughby K (2013) The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock. Eng Geol 163:132–143. doi:10.1016/j.enggeo.2013.05.013

    Article  Google Scholar 

  • Renshaw CE (1995) On the relationship between mechanical and hydraulic apertures in rough‐walled fractures. J Geophys Res Solid Earth (1978–2012) 100(B12):24629–24636. doi:10.1016/j.enggeo.2013.05.013

    Article  Google Scholar 

  • Renshaw CE (1998) Sample bias and the scaling of hydraulic conductivity in fractured rock. Geophys Res Lett 25(1):121–124. doi:10.1029/97GL03400

    Article  Google Scholar 

  • Renshaw CE, Park JC (1997) Effect of mechanical interactions on the scaling of fracture length and aperture. Nature 386:482–484. doi:10.1038/386482a0

    Article  Google Scholar 

  • Robinson PC (1983) Connectivity of fracture systems: a percolation theory approach. J Phys A Math Gen 16(3):605. doi:10.1088/0305-4470/16/3/020

    Article  Google Scholar 

  • Robinson PC (1984) Numerical calculations of critical densities for lines and planes. J Phys A Math Gen 17(14):2823. doi:10.1088/0305-4470/17/14/025

    Article  Google Scholar 

  • Roman A, Ahmadi G, Issen KA, Smith DH (2012) Permeability of fractured media under confining pressure: a simplified model. Open Petrol Eng J 5:36–41. doi:10.2174/1874834101205010036

    Article  Google Scholar 

  • Rossen WR, Gu Y, Lake LW (2000) Connectivity and permeability in fracture networks obeying power-law statistics. SPE Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers SPE 50720, Midland, TX, 21–23 March 2000. doi:10.2118/59720-MS

  • Rouleau A, Gale JE (1987) Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite. Int J Rock Mech Min Sci 24(2):99–112. doi:10.1016/0148-9062(87)91929-2

    Article  Google Scholar 

  • Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11(1):7–40. doi:10.1007/s10040-002-0241-5

    Article  Google Scholar 

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39(2):229–241. doi:10.1016/S1365-1609(02)00027-8

    Article  Google Scholar 

  • Sahimi M (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev Mod Phys 65(4):1393. doi:10.1103/RevModPhys.65.1393

    Article  Google Scholar 

  • Schmittbuhl J, Vilotte JP, Roux S (1995) Reliability of self-affine measurements. Phys Rev E 51(1):131. doi:10.1103/PhysRevE.51.131

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211. doi:10.1190/1.1443748

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, UK

  • Scholz CH, Dawers NH, Yu JZ, Anders MH, Cowie PA (1993) Fault growth and fault scaling laws: preliminary results. J Geophys Res Solid Earth (1978–2012) 98(B12):21951–21961. doi:10.1029/93JB01008

    Article  Google Scholar 

  • Schultz RA, Soliva R, Fossen H, Okubo CH (2008) Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them. J Struct Geol 30(11):1405–1411. doi:10.1016/j.jsg.2008.08.001

    Article  Google Scholar 

  • Segall P, Pollard DD (1983) Joint formation in granitic rock of the Sierra Nevada. Geol Soc Am Bull 94(5):563–575. doi:10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2

    Article  Google Scholar 

  • Shapiro SA, Audigane P, Royer JJ (1999) Large-scale in situ permeability tensor of rocks from induced microseismicity. Geophys J Int 137(1):207–213. doi:10.1046/j.1365-246x.1999.00781.x

    Article  Google Scholar 

  • Shih DCF (2007) Contaminant transport in one‐dimensional single fractured media: semi‐analytical solution for three‐member decay chain with pulse and Heaviside input sources. Hydrol Process 21(16):2135–2143. doi:10.1002/hyp.6363

    Article  Google Scholar 

  • Shikaze SG, Sudicky EA, Schwartz FW (1998) Density-dependent solute transport in discretely-fractured geologic media: is prediction possible? J Contam Hydrol 34(3):273–291. doi:10.1016/S0169-7722(98)00080-1

    Article  Google Scholar 

  • Sih GC (1962) On the singular character of thermal stresses near a crack tip. J Appl Mech 29(3):587–589. doi:10.1115/1.3640612

    Article  Google Scholar 

  • Snow DT (1969) Anisotropie permeability of fractured media. Water Resour Res 5(6):1273–1289. doi:10.1029/WR005i006p01273

    Article  Google Scholar 

  • Sornette A, Davy P, Sornette D (1993) Fault growth in brittle‐ductile experiments and the mechanics of continental collisions. J Geophys Res Solid Earth (1978–2012) 98(B7):12111–12139. doi:10.1029/92JB01740

    Article  Google Scholar 

  • Sullivan TD (2007) Hydromechanical coupling and pit slope movements. In: Potvin Y (ed) Slope stability 2007. Australian Center for Geomechanics, Perth, Australia

  • Sun Y, Buscheck TA (2003) Analytical solutions for reactive transport of N-member radionuclide chains in a single fracture. J Contam Hydrol 62:695–712. doi:10.1016/S0169-7722(02)00181-X

    Article  Google Scholar 

  • Taneda S (1979) Visualization of separating Stokes flows. J Phys Soc Jpn 46(6):1935–1942. doi:10.1143/JPSJ.46.1935

    Article  Google Scholar 

  • Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour Res 17(3):555–564. doi:10.1029/WR017i003p00555

    Article  Google Scholar 

  • Torabi A, Berg SS (2011) Scaling of fault attributes: a review. Mar Petrol Geol 28(8):1444–1460. doi:10.1016/j.marpetgeo.2011.04.003

    Article  Google Scholar 

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86(B10):9287–9298. doi:10.1029/JB086iB10p09287

    Article  Google Scholar 

  • Tsang YW, Tsang CF, Hale FV, Dverstorp B (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32(10):3077–3092. doi:10.1029/96WR01397

    Article  Google Scholar 

  • Tsang CF, Neretnieks I, Tsang Y (2015) Hydrologic issues associated with nuclear waste repositories. Water Resour Res 51. doi:10.1002/2015WR017641

  • Tse R, Cruden DM (1979) Estimating joint roughness coefficients. Int J Rock Mech Min Sci 16(5):303–307. doi:10.1016/0148-9062(79)90241-9

    Article  Google Scholar 

  • van Golf-Racht TD (1982) Fundamentals of fractured reservoir engineering. Elsevier, Amsterdam

  • Vandenboer K, van Beek V, Bezuijen A (2014) 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping. Front Struc Civ Eng 8(2):160–166. doi:10.1007/s11709-014-0257-7

    Article  Google Scholar 

  • Vermilye JM, Scholz CH (1995) Relation between vein length and aperture. J Struct Geol 17(3):423–434. doi:10.1016/0191-8141(94)00058-8

    Article  Google Scholar 

  • Vesselinov VV, Neuman SP, Illman WA (2001a) Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 1. methodology and borehole effects. Water Resour Res 37(12):3001–3017. doi:10.1029/2000WR000133

    Article  Google Scholar 

  • Vesselinov VV, Neuman SP, Illman WA (2001b) Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 2. equivalent parameters, high‐resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3041. doi:10.1029/2000WR000135

    Article  Google Scholar 

  • Vogel T, Gerke HH, Zhang R, Van Genuchten MT (2000) Modeling flow and transport in a two-dimensional dual-permeability system with spatially variable hydraulic properties. J Hydrol 238(1):78–89. doi:10.1016/S0022-1694(00)00327-9

    Article  Google Scholar 

  • Vohralik M, Maryška J, Severýn O (2007) Mixed and nonconforming finite element methods on a system of polygons. Appl Numer Math 57(2):176–193. doi:10.1016/j.apnum.2006.02.005

    Article  Google Scholar 

  • Vu MN, Pouya A, Seyedi DM (2013) Modeling of steady‐state fluid flow in 3D fractured isotropic porous media: application to effective permeability calculation. Int J Numer Anal Methods Geomech 37(14):2257–2277. doi:10.1002/nag.2134

    Article  Google Scholar 

  • Waite ME, Ge S, Spetzler H (1999) A new conceptual model for fluid flow in discrete fractures: an experimental and numerical study. J Geophys Res Solid Earth (1978–2012) 104(B6):13049–13059. doi:10.1029/1998JB900035

    Article  Google Scholar 

  • Walmann T, Malthe-Sørenssen A, Feder J, Jøssang T, Meakin P, Hardy HH (1996) Scaling relations for the lengths and widths of fractures. Phys Rev Lett 77(27):5393. doi:10.1103/PhysRevLett.77.5393

    Article  Google Scholar 

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci 18(5):429–435. doi:10.1016/0148-9062(81)90006-1

    Article  Google Scholar 

  • Walsh JJ, Watterson J (1988) Analysis of the relationship between displacements and dimensions of faults. J Struct Geol 10(3):239–247. doi:10.1016/0191-8141(88)90057-0

    Article  Google Scholar 

  • Wang M, Kulatilake P, Um J, Narvaiz J (2002) Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. Int J Rock Mech Min Sci 39(7):887–904. doi:10.1016/S1365-1609(02)00067-9

    Article  Google Scholar 

  • Wang S, Yu B, Zheng Q, Duan Y, Fang Q (2011) A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with randomly distributed fractal-like tree networks. Adv Water Resour 34(12):1574–1580. doi:10.1016/j.advwatres.2011.08.004

    Article  Google Scholar 

  • Wang Z, Li S, Qiao L (2015a) Analysis of hydro-mechanical behavior of a granite rock mass for a pilot underground crude oil storage facility in China. Rock Mech Rock Eng 48:2459–2472. doi:10.1007/s00603-015-0715-0

    Article  Google Scholar 

  • Wang Z, Li S, Qiao L (2015b) Finite element analysis of hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi:10.1016/j.ijrmms.2014.09.018

    Article  Google Scholar 

  • Warpinski NR, Mayerhofer MJ, Vincent MC, Cipolla CL, Lolon EP (2009) Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity. J Can Petrol Technol 48(10):39–51. doi:10.2118/114173-PA

    Article  Google Scholar 

  • Watanabe K, Takahashi H (1995a) Fractal geometry characterization of geothermal reservoir fracture networks. J Geophys Res Solid Earth (1978–2012) 100(B1):521–528. doi:10.1029/94JB02167

    Article  Google Scholar 

  • Watanabe K, Takahashi H (1995b) Parametric study of the energy extraction from hot dry rock based on fractal fracture network model. Geothermics 24(2):223–236. doi:10.1016/0375-6505(94)00049-I

    Article  Google Scholar 

  • Wen XH, Durlofsky LJ, Edwards MG (2003) Use of border regions for improved permeability upscaling. Math Geol 35(5):521–547. doi:10.1023/A:1026230617943

    Article  Google Scholar 

  • Wilson CR, Witherspoon PA (1976) Flow interference effects at fracture intersections. Water Resour Res 12(1):102–104. doi:10.1029/WR012i001p00102

    Article  Google Scholar 

  • Wu J, Yu B (2007) A fractal resistance model for flow through porous media. Int J Heat Mass Tran 50(19):3925–3932. doi:10.1016/j.ijheatmasstransfer.2007.02.009

    Article  Google Scholar 

  • Wu Q, Kulatilake P (2012) REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China. Comput Geotech 43:124–142. doi:10.1016/j.compgeo.2012.02.010

    Article  Google Scholar 

  • Xiong X, Li B, Jiang Y, Koyama T, Zhang C (2011) Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear. Int J Rock Mech Min Sci 48(8):1292–1302. doi:10.1016/j.ijrmms.2011.09.009

    Article  Google Scholar 

  • Xu P (2015) A discussion on fractal models for transport physics of porous media. Fractals 23(3):1530001. doi:10.1142/S0218348X15300019

    Article  Google Scholar 

  • Xu C, Dowd PA, Wyborn D (2013) Optimisation of a stochastic rock fracture model using Markov Chain Monte Carlo simulation. Min Technol 122(3):153–158. doi:10.1179/1743286312Y.0000000023

    Article  Google Scholar 

  • Xu P, Yu B, Qiu S, Cai J (2008) An analysis of the radial flow in the heterogeneous porous media based on fractal and constructal tree networks. Phys A 387(26):6471–6483. doi:10.1016/j.physa.2008.08.021

    Article  Google Scholar 

  • Yang L, Jiang Y, Li B, Gao Y (2012) Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression. Front Struct Civil Eng 6(2):121–131. doi:10.1007/s11709-012-0151-0

    Google Scholar 

  • Yang L, Jiang Y, Li S, Li B (2013) Experimental and numerical research on 3D crack growth in rocklike material subjected to uniaxial tension. J Geotech Geoenviron 139(10):1781–1788. doi:10.1061/(ASCE)GT.1943-5606.0000917

    Article  Google Scholar 

  • Yao C, Jiang QH, Wei W, Zhou CB (2013) The variational inequality formulation for unconfined seepage through three-dimensional dense fracture networks. Sci Chin Technol Sci 56(5):1241–1247. doi:10.1007/s11431-013-5191-8

    Article  Google Scholar 

  • Yoshinaka R, Yamabe T (1986) Joint stiffness and the deformation behaviour of discontinuous rock. Int J Rock Mech Min Sci 23(1):19–28. doi:10.1016/0148-9062(86)91663-3

    Article  Google Scholar 

  • Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Trans 45(14):2983–2993. doi:10.1016/S0017-9310(02)00014-5

    Article  Google Scholar 

  • Yu B, Li J (2001) Some fractal characters of porous media. Fractals 9(03):365–372. doi:10.1142/S0218348X01000804

    Article  Google Scholar 

  • Yu B, Zou M, Feng Y (2005) Permeability of fractal porous media by Monte Carlo simulations. Int J Heat Mass Trans 48(13):2787–2794. doi:10.1016/j.ijheatmasstransfer.2005.02.008

    Article  Google Scholar 

  • Yun M, Yu B, Cai J (2008) A fractal model for the starting pressure gradient for Bingham fluids in porous media. Int J Heat Mass Transf 51(5):1402–1408. doi:10.1016/j.ijheatmasstransfer.2007.11.016

    Article  Google Scholar 

  • Yun M, Yu B, Cai J (2009) Analysis of seepage characters in fractal porous media. Int J Heat Mass Transf 52(13):3272–3278. doi:10.1016/j.ijheatmasstransfer.2009.01.024

    Article  Google Scholar 

  • Zafarani A, Detwiler RL (2013) An efficient time-domain approach for simulating Pe-dependent transport through fracture intersections. Adv Water Resour 53:198–207. doi:10.1016/j.advwatres.2012.11.011

    Article  Google Scholar 

  • Zeng Z, Grigg R (2006) A criterion for non-Darcy flow in porous media. Transp Porous Med 63(1):57–69. doi:10.1007/s11242-005-2720-3

    Article  Google Scholar 

  • Zhang X, Sanderson DJ (1996) Effects of stress on the two-dimensional permeability tensor of natural fracture networks. Geophys J Int 125(3):912–924. doi:10.1016/0148-9062(95)00042-9

    Article  Google Scholar 

  • Zhang X, Sanderson DJ, Harkness RM, Last NC (1996) Evaluation of the 2-D permeability tensor for fractured rock masses. Int J Rock Mech Min Sci 33(1):17–37. doi:10.1016/0148-9062(95)00042-9

    Article  Google Scholar 

  • Zhang X, Powrie W, Harkness R, Wang S (1999) Estimation of permeability for the rock mass around the shiplocks of the Three Gorges Project, China. Int J Rock Mech Min Sci 36(3):381–397. doi:10.1016/S0148-9062(99)00012-1

    Article  Google Scholar 

  • Zhang Z, Nemcik J (2013) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 477:139–151. doi:10.1016/j.jhydrol.2012.11.024

    Article  Google Scholar 

  • Zhang Z, Nemcik J, Ma S (2013) Micro-and macro-behaviour of fluid flow through rock fractures: an experimental study. Hydrogeol J 21(8):1717–1729. doi:10.1016/0148-9062(95)00042-9

    Article  Google Scholar 

  • Zhao Z (2013) Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study. Rock Mech Rock Eng 46(6):1461–1479. doi:10.1007/s00603-013-0373-z

    Article  Google Scholar 

  • Zhao Z, Li B (2015) On the role of fracture surface roughness in fluid flow and solute transport through fractured rocks. In: Proc. of the 13th Int. Congr. on Rock Mechanics, Montreal, Canada, no. 208, May 2015

  • Zhao Z, Jing L, Neretnieks I (2010a) Evaluation of hydrodynamic dispersion parameters in fractured rocks. J Rock Mech Geotech Eng 2:243–254. doi:10.3724/SP.J.1235.2010.00243

    Article  Google Scholar 

  • Zhao Z, Jing L, Neretnieks I (2010b) Stress effects on nuclide transport in fractured rocks: a numerical study. In: ISRM International Symposium-EUROCK 2010, Lausanne, Switzerland, pp 783–786

  • Zhao Z, Jing L, Neretnieks I, Moreno L (2011a) Analytical solution of coupled stress-flow-transport processes in a single rock fracture. Comput Geotech 37(9):1437–1449. doi:10.1016/j.cageo.2011.02.015

    Google Scholar 

  • Zhao Z, Jing L, Neretnieks I, Moreno L (2011b) Numerical modeling of stress effects on solute transport in fractured rocks. Comput Geotech 38(2):113–126. doi:10.1016/j.compgeo.2010.10.001

    Article  Google Scholar 

  • Zhao Y, Peng Q, Wan W, Wang W, Zhang S (2014a) Seepage-fracture coupling mechanism of rock masses cracking propagation under high hydraulic pressure and numerical verification (in Chinese). Rock Soil Mech 35(2):556–564

    Google Scholar 

  • Zhao Z, Li B, Jiang Y (2014b) Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks. Rock Mech Rock Eng 47(6):2279–2286. doi:10.1007/s00603-013-0497-1

    Article  Google Scholar 

  • Zheng Q, Yu B (2012) A fractal permeability model for gas flow through dual-porosity media. J Appl Phys 111(2):024316. doi:10.1063/1.3679070

    Article  Google Scholar 

  • Zhou CB, Yu SD (1999) Representative elementary volume (REV): a fundamental problem for selecting the mechanical parameters of jointed rock mass. Chin J Eng Geol 7(4):332–336

    Google Scholar 

  • Zhou CB, Sharma RS, Chen YF, Rong G (2008) Flow-stress coupled permeability tensor for fractured rock masses. Int J Numer Anal Methods Geomech 32(11):1289–1309. doi:10.1002/nag.668

    Article  Google Scholar 

  • Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218. doi:10.1016/j.ijrmms.2015.09.027

    Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996a) Hydraulic conductivity of rock fractures. Transp Porous Med 23(1):1–30. doi:10.1007/BF00145263

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996b) Effective transmissivity of two-dimensional fracture networks. Int J Rock Mech Min Sci 33(4):433–438. doi:10.1016/0148-9062(95)00067-4

    Article  Google Scholar 

  • Zimmerman R, Main I (2004) Hydromechanical behavior of fractured rocks. Int Geophys Ser 89:363–422

    Article  Google Scholar 

  • Zimmerman RW, Al-Yaarubi A, Pain CC, Grattoni CA (2004) Non-linear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:163–169. doi:10.1016/j.ijrmms.2004.03.036

    Article  Google Scholar 

  • Zou L, Jing L, Cvetkovic V (2015) Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int J Rock Mech Min Sci 75:102–118. doi:10.1016/j.ijrmms.2015.01.016

    Google Scholar 

Download references

Acknowledgements

This study has been partially funded by the National Natural Science Foundation of China (Grant Nos. 41427802, 51379117, 51579239). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Appendix

Appendix

Nomenclature

A :

Cross-sectional area

A′:

First coefficient in Forchheimer’s law-based function

B :

Dimensionless constant of proportionality

B(k):

Average spacing of the kth set of fractures

B′:

Second coefficient in Forchheimer’s law-based function

C :

Dimensional function

C r :

Contact ratio

D T :

Fractal dimension of nonlinear streamline of fluid flow

D TP :

Fractal dimension for tortuosity of tortuous capillaries

D f :

Fractal dimension of fracture backbone

D p :

Fractal dimension for the size distribution of capillaries/pores

E :

Mechanical aperture

E M :

Mean mechanical aperture

J :

Hydraulic gradient

J c :

Critical hydraulic gradient

K :

Permeability of a fracture network

K 0 :

Initial permeability of a fracture network

K m :

Matrix permeability

K t :

Permeability of a dual-porosity medium

L :

Size of a fracture system

M :

Number of sampling points

M′:

Total number of fracture sets

N :

Total number of fractures

N i :

Number of intersections

P ij :

Fracture geometry tensor

Q :

Macroscopic flow rate

R :

Random number

T :

Travel time of particle through a fracture network

T f :

Fracture transmissivity

W :

A parameter for charactering connectivity of a fracture network

X 1 :

Connectivity index

X 2 :

Box-counting dimension of fracture lines

X 3 :

Hydraulic conductivity

Z 2 :

Roughness coefficient

a 1 :

Power law exponent for fracture number-length relationship

a 2 :

Power law exponent for shear displacement-length relationship

b :

Second moment of the lognormal distribution

b′:

Half aperture

d c :

Fracture center density

e :

Hydraulic aperture

e a :

Lower aperture limit

e b :

Upper aperture limit

e max :

Maximum opening displacement

e (m) :

The mth fracture aperture

g′:

Error function

g :

Gravitational acceleration

k f :

Equivalent hydraulic conductivity of the fth set of fractures

k n :

Normal stiffness

l :

Fracture length

l 0 :

Straight length of a capillary

l max :

Maximum fracture length

l min :

Minimum fracture length

l t :

Tortuous length of a fracture

n :

Number of fractures

n f :

Unit vector normal to the fth set of fractures

p :

Probability coefficient

p * :

Generalized expression of a percolation

p c :

Percolation threshold

q :

Flow rate of a single fracture

s f :

Change in spacing

u s :

Shear displacement

u sp :

Peak shear displacement

l M :

Arithmetic mean of the length of all fractures

\( \left[\overline{K}\right] \) :

Equivalent permeability tensor

Greek letters

v 1 :

First coefficient depending on the Euclidean dimension of the system

v 2 :

A parameter for characterizing fracture length

ΔP :

Hydraulic pressure difference

Δε zf :

Increment of the normal strain

Ω :

Fracture coordinate transformation coefficient

α 1 :

Proportionality coefficient for fracture number-length relationship

α 2 :

Proportionality coefficient in the fractal model

α 3 :

Proportionality coefficient for shear displacement-length relationship

α 4 :

Proportionality coefficient for opening displacement-length relationship

α′:

Fracture azimuth

δ 1 :

Relative flow rate deviation rate

δ 2 :

Relative time deviation rate

δ ij :

Kroneker delta

δ max :

Maximum shear displacement

ζ :

Overall connectivity of a fracture network

θ :

Fracture dip angle

λ :

Capillary/pore diameter

λ max :

Maximum capillary/pore diameter

λ′:

Coefficient of aperture

λ′′:

A dimensionless scalar

μ :

Fluid viscosity

ξ :

Characteristic scale

ρ :

Fluid density

ρ c :

Characteristic exponent

ρ′:

Dimensionless fracture density

σ apert :

Standard deviation of mean mechanical aperture

σ n :

Normal stress

σ nc :

Critical normal stress

σ slope :

Standard deviation of local slope of fracture surface

φ :

Fracture porosity

φ i :

Equivalent porosity in i-direction of the Cartesian coordinates

ψ :

Second coefficient depending on the Euclidean dimension of the system

ω :

Upper and lower bounds between −1 and 1

Abbreviations

BEM:

Boundary element method

CEM:

Composite element method

DEM:

Distinct element method

DFN:

Discrete fracture network

EFNP:

Equivalent fracture network permeability

FEMDEM:

Finite-discrete element method

FVM:

Finite volume method

HM:

Hydro mechanical

JRC:

Joint roughness coefficient

LEFM:

Linear elastic fracture mechanics

MHFE:

Mixed hybrid finite element

NS:

Navier–Stokes

REV:

Representative elementary volume

Re:

Reynolds number

THM:

Thermo-hydro-mechanical

THMC:

Thermo-hydro-mechanical-chemical

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Li, B., Jiang, Y. et al. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrogeol J 24, 1623–1649 (2016). https://doi.org/10.1007/s10040-016-1441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1441-8

Keywords

Navigation