Skip to main content

Advertisement

Log in

Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

Evaluation de la filtration par les berges en tant que méthode de prétraitement pour la fourniture d’une eau potable hygiéniquement sure en Norvège: résultats du suivi de deux sites à grande échelle

Evaluación de la filtración de banco como un método de pretratamiento para el suministro de agua potable higiénicamente segura en Noruega: resultados del monitoreo a gran escala en dos sitios

河岸入渗作为挪威安全饮用水规定的预处理方法评价:两个全尺度场地的监测结果

Avaliação de filtração por bancadas como um método pré-tratamento para fornecimento de água potável higienicamente segura na Noruega: resultados do monitoramento em dois locais em escala total

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50–80-m filtration and 20–30 days of subsurface passage. NOM reductions (color: 74–97%; dissolved organic carbon: 54–80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

Résumé

Deux études de cas ont été menées dans le centre de la Norvège afin d’évaluer la performance des systèmes de filtration par les berges dans des aquifères alluviaux sous climat froid en se fondant sur une recharge à partir d’eaux de surface riches en humus avec une contamination microbienne modérée. Trois puits municipaux et deux sources d’eaux superficielles appartenant aux dispositifs opérationnels de filtration par les berges ont été suivis pour ce qui est des bactériophages qui surviennent naturellement, des indicateurs fécaux, de la matière organique naturelle (MON) et des paramètres de qualité physico-chimique de l’eau, pendant une période de 4 mois. Le transit dans l’aquifère a réduit efficacement la concentration des microorganismes et de MON dans les deux sites. Les bactériophages ont été détectés dans 13 des 16 (81%) échantillons d’eau de surface et dans 4 des 24 (17%) échantillons d’eau des puits, et ont subi une réduction de 3 ± 0.3 log10 après 50–80 m de filtration et 20–40 jours de transit dans le sous-sol. Les réductions de MON (couleur: 74–97%: carbone organique dissous: 54–80%: acides très hydrophobes: 70%) étaient similaires à celles obtenues par les procédés de traitement conventionnels de l’eau et aucun traitement supplémentaire n’a été nécessaire. Tant la dilution par les eaux souterraines que la filtration par les sédiments ont contribué à l’amélioration de la qualité hygiénique de l’eau, mais la filtration par les sédiments apparaît comme étant le processus le plus important concernant les réductions microbiennes et de MON. Une analyse des forces-faiblesses-opportunités-menaces a montré que la technologie de la filtration par les berges offre un fort potentiel en tant que méthode de prétraitement pour l’approvisionnement d’eau potable hygiéniquement sure en Norvège.

Resumen

Se realizaron dos estudios de casos en el centro de Noruega con el fin de evaluar el rendimiento de los sistemas de filtración de banco en los acuíferos fluviales en clima frío que dependen de la recarga del agua superficial rica en humus con contaminación microbiana moderada. Se monitorearon durante un período de 4 meses tres pozos municipales y dos fuentes de agua superficial en la operación de los sistemas de filtración de banco para la presencia natural de bacteriófagos, indicadores fecales, materia orgánica natural (NOM) y parámetros físico-químicos de la calidad del agua. El pasaje por el acuífero redujo eficazmente las concentraciones de microorganismos y el NOM en ambos sitios de estudio. Se detectaron bacteriófagos en 13 de 16 (81%) de las muestras de agua de superficie y en 4 de 24 (17%) de las muestras de agua de pozo y se sometieron a una reducción de 3 ± 0.3 log10 después de 50–80 m de filtración y 20–30 días de pasaje subsuperficial . Las reducciones de NOM (color: 74–97%, carbono orgánico disuelto: 54–80%, ácidos muy hidrófobos: 70%) fueron similares a las obtenidas por los procesos convencionales de tratamiento de agua y no se necesitó tratamiento adicional. Tanto la dilución de agua subterránea como la filtración por sedimentos contribuyeron a mejorar la calidad del agua, pero la filtración por sedimentos parecía ser el proceso más importante con respecto a las reducciones microbianas y de ONM. Un análisis de fortalezas-debilidades-oportunidades-amenazas mostró que la tecnología de filtración de banco tiene un alto potencial como método de pretratamiento para el suministro de agua potable higiénicamente segura en Noruega.

摘要

在挪威中部进行了两个案例研究,目的就是评价依赖于具有中度微生物污染、富含腐殖物地表水补给的寒冷气候河流含水层中河岸入渗的性能。对运行的河岸入渗系统三个市政井和两个地表水源进行了为期4个月的天然出现的噬菌体、排泄物指标、天然有机物和物理化学水质参数监测。含水层通道有效地减少了两个研究场地的微生物和天然有机物含量。在16个水样中的13个地表水样中(81%)和24个井水样中的4个水样中(17%)检出了噬菌体,经过50–80米的入渗及20–30天的地表以下通道,噬菌体减少了3 ± 0.3 log10。天然有机物的减少量(颜色:74–97%;溶解有机碳:54–80%;非常疏水酸:70%)与通过常规水处理过程获得的减少量类似,不需要进一步的处理。地下水稀释和沉积物入渗对水质改良贡献巨大,但沉积物入渗对于微生物和天然有机物的减少是最重要的过程。优势--劣势—机会—威胁分析显示,河岸入渗技术作为挪威挪威安全饮用水规定的预处理方法具有很大的潜力。

Resumo

Dois casos de estudos foram conduzidos na Noruega central para avaliar o desempenho de sistemas de filtragem por bancadas em aquíferos aluviais de clima frio dependentes da recarga a partir de águas superficiais ricas em material húmico com contaminação microbiológica moderada. Três poços municipais e duas fontes de águas superficiais em sistemas de filtragem por bancadas em operação foram monitorados para bacteriófagos de ocorrência natural, indicadores fecais, matéria orgânica natural (MON) e parâmetros físico-químicos de qualidade da água durante um período de 4 meses. A passagem pelo aquífero reduziu efetivamente as concentrações de microrganismos e MON nos dois locais de estudo. Bacteriófagos foram detectados em 13 das 16 (81%) das amostras de águas superficiais e em 4 de 24 (17%) das amostras de águas dos poços, e passaram por uma redução de 3 ± 0.3 log10 após filtragem por50–80 m e 20–30 dias de passagem subterrânea. A redução de MON (cor: 74–97%; carbono orgânico dissolvido: 54–80%; ácidos muito hidrofóbicos: 70%) foi similar àquelas alcançadas por processos de tratamento convencionais da água e não foram necessários tratamentos subsequentes. Ambas, diluição das águas subterrâneas e filtração de sedimentos contribuíram para melhorias na qualidade higiênica das águas, mas a filtração de sedimentos parece ser o processo mais importante em relação a redução microbiana e de MON. Uma análise força-oportunidade-fraqueza-ameaça mostrou que a tecnologia de filtração por bancadas tem um alto potencial como um método pré-tratamento no fornecimento de água potável higienicamente segura na Noruega.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banks D, Midtgård AK, Morland G, Reimann C, Strand T, Bjorvatn K, Siewers U (1998) Is pure groundwater safe to drink? Natural ‘contamination’ of groundwater in Norway. Geol Today 14(3):104–113

    Article  Google Scholar 

  • Berger P (2002) Removal of Cryptosporidium using Bank filtration. In: Ray C (ed) Riverbank filtration: understanding contaminant biogeochemistry and pathogen removal. Springer, Dordrecht, The Netherlands, pp 85–121

  • Betancourt WQ, Kitajima M, Wing AD, Regnery J, Drewes JE, Pepper IL, Gerba CP (2014) Assessment of virus removal by managed aquifer recharge at three full-scale operations. J Environ Sci Health 49:1685–1692

    Article  Google Scholar 

  • Blanford W, Boving T, Al-Ghazawi Z, Shawaqfah M, Al-Rashdan J, Saadoun I, Schijven J, Ababneh Q (2010) River bank filtration for protection of Jordanian surface and groundwater. Proceedings of the World Environmental and Water Resources Congress 2010: Challenges of Change. 2010 ASCE, Providence RI, May 2010, pp 776–781

  • Bradford SA, Wang Y, Kim H, Torkzaban S, Šimůnek J (2014) Modeling microorganism transport and survival in the subsurface. J Environ Qual 43(2):421–440

    Article  Google Scholar 

  • Buchanan W, Roddick F, Porter N (2006) Formation of hazardous by-products resulting from the irradiation of natural organic matter: comparison between UV and VUV irradiation. Chemosphere 63(7):1130–1141

    Article  Google Scholar 

  • Bustos Medina D, van den Berg G, van Breukelen B, Juhasz-Holterman M, Stuyfzand P (2013) Iron-hydroxide clogging of public supply wells receiving artificial recharge: near-well and in-well hydrological and hydrochemical observations. Hydrogeol J 21(7):1393–1412

    Article  Google Scholar 

  • Chave P, Howard G, Schijven J, Appleyard S, Fladerer F, Schimon W (2006) In: Schmoll O, Howard G, Chilton J, Chorus I (eds) Groundwater protection zones. WHO/IWA, London, pp 461–492

    Google Scholar 

  • Chow C, Fabris R, Drikas M (2004) A rapid fractionation technique to characterise natural organic matter for the optimisation of water treatment processes. Aqua 53:85–92

    Google Scholar 

  • Dash RR, Prakash EB, Kumar P, Mehrotra I, Sandhu C, Grischek T (2010) River bank filtration in Haridwar, India: removal of turbidity, organics and bacteria. Hydrogeol J 18(4):973–983

    Article  Google Scholar 

  • DeBorde DC, Woessner WW, Kiley QT, Ball P (1999) Rapid transport of viruses in a floodplain aquifer. Water Res 33(10):2229–2238

    Article  Google Scholar 

  • Derx J, Blaschke AP, Farnleitner AH, Pang L, Blöschl G, Schijven JF (2013) Effects of fluctuations in river water level on virus removal by bank filtration and aquifer passage: a scenario analysis. J Contam Hydrol 147:34–44

    Article  Google Scholar 

  • Eikebrokk B, Vogt R, Liltved H (2004) NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes. Water Sci Technol 4(4):47–54

    Google Scholar 

  • Essl L, Starkl M, Kimothi P, Sandhu C, Grischek T (2014) Riverbank filtration and managed aquifer recharge as alternative water supply technologies for India: strengths–weaknesses–opportunities–threats analysis. Water Sci Technol 14(4):690–697

    Google Scholar 

  • Fabris R, Chow CW, Drikas M, Eikebrokk B (2008) Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res 42(15):4188–4196

    Article  Google Scholar 

  • Fiksdal L, Leiknes T (2006) The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J Membr Sci 279(1):364–371

    Article  Google Scholar 

  • Frengstad B (1997) Grunnvannsundersøkelser ved Storoddan, Hemne kommune [Groundwater investigations at Storoddan, municipality of Hemne]. Report no. 97.049, Geological Survey of Norway, Trondheim, Norway, 24 pp

  • Gaut S (2011) Beskyttelse av grunnvannsanlegg: en veileder [Protection of groundwater works: guidelines]. Geological Survey of Norway, Trondheim, Norway, 45 pp

  • Gaut S, Dagestad A, Robertson L, Gjerde B, Brattli B (2008) Occurrence of Cryptosporidium oocysts and Giardia cysts in Norwegian groundwater wells in bedrock. J Water Health 6(3):383–388

    Article  Google Scholar 

  • Gjessing ET (2013) Coloured materials in surface water in the sub Arctic Zone: an overview of its formation, properties and environmental changes. Nat Sci 5:400–410

    Google Scholar 

  • Grabow W (2004) Bacteriophages: update on application as models for viruses in water. Water SA 27(2):251–268

    Article  Google Scholar 

  • Grischek T, Ahrns J, Kuehne M, Bartak R, Herlitzius J, Ghodheif K, Wahaab RA (2013) Coupling riverbank filtration and subsurface iron removal. Proceedings, International Symposium on Managed Aquifer Recharge, Beijing, October 2013, pp 1–12

  • Grünheid S, Amy G, Jekel M (2005) Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res 39(14):3219–3228

    Article  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1995) Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta 59(2):219–229

    Article  Google Scholar 

  • Hilmo BO, Storrø G (2000) Prøvepumping av grunnvannsbrønenr på Eide, Hemne kommune [Test pumping of groundwater wells at Eide, municipality of Hemne]. Report no. 2000.086. Geological Survey of Norway, Trondheim, Norway, 41 pp

  • Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266(3):139–144

    Article  Google Scholar 

  • Hua G, Reckhow DA, Abusallout I (2015) Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere 130:82–89

    Article  Google Scholar 

  • John DE, Rose JB (2005) Review of factors affecting microbial survival ingroundwater. Environ Sci Technol 39(19). doi:10.1021/es047995w

  • Juhna T, Klavins M, Eglite L (2003) Sorption of humic substances on aquifer material at artificial recharge of groundwater. Chemosphere 51(9):861–868

    Article  Google Scholar 

  • Kallioras A, Pliakas F, Diamantis I, Kallergis G (2010) SWOT analysis in groundwater resources management of coastal aquifers: a case study from Greece. Water Int 35(4):425–441

    Article  Google Scholar 

  • Katko T, Lipponen MA, Rönkä ET (2006) Groundwater use and policy in community water supply in Finland. Hydrogeol J 14(1–2):69–78

    Article  Google Scholar 

  • Knutsson G (2008) Hydrogeology in the Nordic countries. Episodes 31(1):148–154

    Google Scholar 

  • Kolehmainen RE, Langwaldt JH, Puhakka JA (2007) Natural organic matter (NOM) removal and structural changes in the bacterial community during artificial groundwater recharge with humic lake water. Water Res 41(12):2715–2725

    Article  Google Scholar 

  • Kvitsand HML, Ilyas A, Østerhus SW (2015) Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: field experiments and modeling. Water Resour Res 51:9725–9745

    Article  Google Scholar 

  • Leiknes T, Ødegaard H, Myklebust H (2004) Removal of natural organic matter (NOM) in drinking water treatment by coagulation–microfiltration using metal membranes. J Membr Sci 242(1):47–55

    Article  Google Scholar 

  • Lindroos A-J, Kitunen V, Derome J, Helmisaari H-S (2002) Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in southern Finland. Water Res 36(20):4951–4958

    Article  Google Scholar 

  • Martin J, Henrichs T, Maguire C, Jarosinska D, Asquith M, Hoogeveen Y (2015) The European Environment. State and Outlook 2015. http://www.eea.europa.eu/publications/92-9167-032-4/page014.html. Accessed November 2015

  • Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpää M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11):1431–1442

    Article  Google Scholar 

  • Meier M, Namjesnik-Dejanovic K, Maurice PA, Chin Y-P, Aiken GR (1999) Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chem Geol 157(3–4):275–284

    Article  Google Scholar 

  • Meyn T (2011) NOM removal in drinking water treatment using dead-end ceramic microfiltration. PhD Thesis, NTNU, Trondheim, Norway)

  • Myrstad L, Nordheim CF, Janak K (2015) Rapport fra Vannverksregisteret: Drikkevannsstatus (data 2011) [Report from the Waterworks Registry, Drinking Water Status (data 2011)]. Water report 122, Norwegian Institute of Public Health, Oslo

  • NFSA (2011) Veiledning til Drikkevannsforskriften (FOR-2001-12-04-1372) [Guidance to drinking water regulations of 2001]. Norwegian Food Safety Authorities, Oslo, 65 pp

    Google Scholar 

  • Nissinen T, Miettinen I, Martikainen P, Vartiainen T (2001) Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 45(6):865–873

    Article  Google Scholar 

  • Ødegaard H, Østerhus SW, Melin E, Eikebrokk B (2010) NOM removal technologies: Norwegian experiences. Drinking Water Eng Sci 3(1):1–9

    Article  Google Scholar 

  • Parkhurst DF, Stern DA (1998) Determining average concentrations of Cryptosporidium and other pathogens in water. Environ Sci Technol 32(21):3424–3429

    Article  Google Scholar 

  • Partinoudi V, Collins MR (2007) Assessing RBF reduction/removal mechanisms for microbial and organic DBP precursors. J Am Water Works Assoc 99(12):61–71

    Google Scholar 

  • Pieper AP, Ryan JN, Harvey RW, Amy GL, Illangasekare TH, Metge DW (1997) Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matter. Environ Sci Technol 31(4):1163–1170

    Article  Google Scholar 

  • Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1999) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol 33(1):63–73

    Article  Google Scholar 

  • Schijven JF, Hoogenboezem W, Hassanizadeh M, Peters JH (1999) Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands. Water Resour Res 35(4):1101–1111

    Article  Google Scholar 

  • Schijven J, Berger P, Miettinen I (2003) In: Ray C, Melin G, Linsky R (eds) Riverbank filtration. Springer, Dordrecht, The Netherlands, pp 73–116

    Chapter  Google Scholar 

  • Segar D, Hilmo BO (1996) Bestemmelse av beskyttelsessoner på Eide, Hemne kommune [Assessment of groundwater protection zones at Eide, municipality of Hemne]. Report no. 96.034, Geological Survey of Norway, Trondheim, Norway, 25 pp

  • Segar D, Mauring E (1994) Grunnvannsundersøkelser i Hemne kommune. Oppfølging av GiN-prosjektet i Sør-Trøndelag fylke [Groundwater investigations in the municipality of Hemne]. Follow-up of the GiN project in the county of Sør-Trøndelag. Report no 94.069, Geological Survey of Norway, Trondheim, Norway, 113 pp

  • Shamsuddin MKN, Sulaiman WNA, Suratman S, Zakaria MP, Samuding K (2014) Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia. Hydrogeol J 22(3):543–564

    Article  Google Scholar 

  • Sidhu JP, Toze S, Hodgers L, Barry K, Page D, Li Y, Dillon P (2015) Pathogen decay during managed aquifer recharge at four sites with different geochemical characteristics and recharge water sources. J Environ Qual 44:1402–1412

    Article  Google Scholar 

  • Sprenger C, Lorenzen G, Hülshoff I, Grützmacher G, Ronghang M, Pekdeger A (2011) Vulnerability of bank filtration systems to climate change. Sci Total Environ 409(4):655–663

    Article  Google Scholar 

  • Sprenger C, Lorenzen G, Grunert A, Ronghang M, Dizer H, Selinka H, Girones R, Lopez-Pila J, Mittal A, Szewzyk R (2014) Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India). J Water Health 12(2):332–342

    Article  Google Scholar 

  • Taylor R, Cronin A, Pedley S, Barker J, Atkinson T (2004) The implications of groundwater velocity variations on microbial transport and wellhead protection: review of field evidence. FEMS Microbiol Ecol 49(1):17–26

    Article  Google Scholar 

  • Tihomirova K, Rubulis J, Juhna T (2010) Changes of NOM fractions during conventional drinking water treatment process in Riga, Latvia. Water Sci Technol 10(2):157–163

    Google Scholar 

  • Tryland I, Robertson L, Blankenberg AGB, Lindholm M, Rohrlack T, Liltved H (2011) Impact of rainfall on microbial contamination of surface water. Int J Clim Change Strat Manag 3(4):361–373

    Article  Google Scholar 

  • USEPA (2006) Ground water rule. https://www.epa.gov/dwreginfo/ground-water-rule. Accessed November 2015

  • van Beek K, Breedveld R, Stuyfzand P (2009) Preventing two types of well clogging. Am Water Works Assoc J 101(4):125–134

    Google Scholar 

  • van der Wielen PWJJ, Senden WJMK, Medema G (2008) Removal of bacteriophages MS2 and ΦX174 during transport in a sandy anoxic aquifer. Environ Sci Technol 42(12):4589–4594

    Article  Google Scholar 

  • Veenendaal HR, Brouwer-Hanzens AJ (2007) A method for the concentration of microbes in large voluems of water. TECHNEAU, Nieuwegein, The Netherlands, 30 pp

    Google Scholar 

  • Weiss WJ, Bouwer EJ, Ball WP, O’Melia CR, Aboytes R, Speth TF (2004) Riverbank filtration: effect of ground passage on NOM character. J Water Supply 53(2):61–83

  • Weiss WJ, Bouwer EJ, Aboytes R, LeChevallier MW, O’Melia CR, Le BT, Schwab KJ (2005) Riverbank filtration for control of microorganisms: results from field monitoring. Water Res 39(10):1990–2001

    Article  Google Scholar 

  • Woessner WW, Ball PN, DeBorde DC, Troy TL (2001) Viral transport in a sand and gravel aquifer under field pumping conditions. Ground Water 39(6):886–894

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by the Norwegian Research Council, Norwegian Water BA and the EU-financed Interregional project “Viruses in water – Scandinavian knowledge bank” (VISK). Bjørn Terje Kasseth, Mette Småge Moe and Olav Aa at the municipality of Hemne are acknowledged for providing access to the waterworks and information on management strategies at the BF sites. Elisabeth S. Elgsæther (previously at NTNU, now at Asplan Viak AS) and Trine M. H. Næss (Dept. of Hydraulic and Environmental Engineering, NTNU) are acknowledged for assistance in the field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne M. L. Kvitsand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvitsand, H.M.L., Myrmel, M., Fiksdal, L. et al. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites. Hydrogeol J 25, 1257–1269 (2017). https://doi.org/10.1007/s10040-017-1576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1576-2

Keywords

Navigation