Skip to main content

Advertisement

Log in

An overview of dissolved organic carbon in groundwater and implications for drinking water safety

Synthèse sur le carbone organique dissous dans l’eau souterraine et implications pour la sécurité de l’eau potable

Una visión general del carbono orgánico disuelto en el agua subterránea y su implicancia para la seguridad del agua potable

地下水中的溶解有机碳及对饮用水供水的影响回顾

Um panorama sobre carbono dissolvido em águas subterrâneas e implicações para segurança da água potável

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Dissolved organic carbon (DOC) is composed of a diverse array of compounds, predominantly humic substances, and is a near ubiquitous component of natural groundwater, notwithstanding climatic extremes such as arid and hyper-arid settings. Despite being a frequently measured parameter of groundwater quality, the complexity of DOC composition and reaction behaviour means that links between concentration and human health risk are difficult to quantify and few examples are reported in the literature. Measured concentrations from natural/unpolluted groundwater are typically below 4 mg C/l, whilst concentrations above these levels generally indicate anthropogenic influences and/or contamination issues and can potentially compromise water safety. Treatment processes are effective at reducing DOC concentrations, but refractory humic substance reaction with chlorine during the disinfection process produces suspected carcinogenic disinfectant by-products (DBPs). However, despite engineered artificial recharge systems being commonly used to remove DOC from recycled treated wastewaters, little research has been conducted on the presence of DBPs in potable groundwater systems. In recent years, the capacity to measure the influence of organic matter on colloidal contaminants and its influence on the mobility of pathogenic microorganisms has aided understanding of transport processes in aquifers. Additionally, advances in polymerase chain reaction techniques used for the detection, identification, and quantification of waterborne pathogens, provide a method to confidently investigate the behaviour of DOC and its effect on contaminant transfer in aquifers. This paper provides a summary of DOC occurrence in groundwater bodies and associated issues capable of indirectly affecting human health.

Résumé

Le carbone organique dissous (COD) correspond à un ensemble varié de composés, principalement des substances humiques, et est. un composant pratiquement ubiquiste des eaux souterraines naturelles, indépendamment des extrêmes climatiques tels les situations arides et hyper-arides. Bien qu’étant un paramètre de la qualité de l’eau souterraine fréquemment mesuré, la complexité de la composition en COD et son comportement lors des réactions engendre une difficulté à quantifier les liens entre sa concentration et le risque pour la santé humaine et peu d’exemples sont rapportés dans la littérature. Les concentrations mesurées dans les eaux souterraines naturelles/non polluées sont typiquement inférieures à 4 mg C/l, alors que les concentrations au-dessus de ces niveaux indiquent généralement des influences anthropiques et/ou des problèmes de contamination et peuvent potentiellement mettre en péril la sécurité de l’eau. Les processus de traitement sont efficaces pour réduire la concentration en COD, mais la réaction entre substance humique réfractaire et le chlore pendant les processus de désinfection produisent des sous-produits de chloration (SPCs) suspectés d’être cancérigènes. Cependant, malgré un usage commun des systèmes de recharge artificielle conçus pour enlever le COD des eaux recyclées des stations d’épuration, peu de recherche ont été conduites sur la présence de SPCs dans les eaux souterraines utilisées pour l’eau potable. Ces dernières années, la capacité pour mesurer l’influence de la matière organique sur les contaminants colloïdaux et sur la mobilité des micro-organismes pathogènes a aidé à la compréhension des processus de transport dans les aquifères. De plus, les progrès des techniques de réaction en chaîne de la polymérase utilisées pour la détection, l’identification et la quantification de agents pathogènes en phase aqueuse, constituent une méthode sûre pour étudier le comportement du COD et son effet sur le transfert de contaminants dans les aquifères. Cet article fournit une synthèse de l’occurrence du COD dans les masses d’eau souterraine et des problèmes connexes susceptibles d’avoir une incidence indirecte sur la santé humaine.

Resumen

El carbono orgánico disuelto (DOC) se compone de una diversidad de compuestos, predominantemente de sustancias húmicas, y es un componente casi omnipresente del agua subterránea natural, a pesar de los extremos climáticos tales como los ambientes áridos e hiperáridos. A pesar de ser un parámetro frecuentemente medido de la calidad del agua subterránea, la complejidad de la composición del DOC y el comportamiento de la reacción hacen que los vínculos entre la concentración y el riesgo para la salud humana sean difíciles de cuantificar y pocos ejemplos se reportan en la literatura. Las concentraciones medias del agua subterránea naturales/no contaminadas suelen ser inferiores a 4 mg C/l, mientras que las concentraciones superiores a estos niveles generalmente indican influencias antropogénicas y/o problemas de contaminación y pueden comprometer la seguridad del agua. Los procesos de tratamiento son eficaces para reducir las concentraciones de DOC, pero la reacción refractaria de la sustancia húmica con el cloro durante el proceso de desinfección produce sospechosos de subproductos desinfectantes carcinógenos (DBPs). Sin embargo, a pesar de que los sistemas artificiales de recarga artificial se utilizan comúnmente para eliminar DOC de aguas residuales tratadas recicladas, se ha realizado poca investigación sobre la presencia de DBP en sistemas de agua subterránea potable. En los últimos años, la capacidad de medir la influencia de la materia orgánica sobre los contaminantes coloidales y su influencia en la movilidad de los microorganismos patógenos ha facilitado la comprensión de los procesos de transporte en los acuíferos. Además, los avances en las técnicas de reacción en la cadena de la polimerasa utilizadas para la detección, identificación y cuantificación de patógenos transmitidos por el agua, proporcionan un método para investigar con confianza el comportamiento del DOC y su efecto sobre la transferencia de contaminantes en los acuíferos. Este trabajo proporciona un resumen de la presencia de DOC en cuerpos de agua subterránea y problemas asociados que pueden afectar indirectamente a la salud humana.

摘要

溶解有机碳(DOC)由各种各样的混合物、主要是腐殖物组成,是天然地下水中一种几乎无处不在的成分,即使是在气候极端条件下诸如干旱及超干旱环境下也莫不如此。尽管是地下水质频繁测量的参数,但DOC组成的复杂性及反应特性意味着,浓度和人类健康风险之间的联系很难量化,文献报道的很少。天然/未污染地下水的测量浓度一般低于4 mg C/l,而高于这个水平的浓度通常表明有人类活动引起的影响及/污染问题,可能潜在地危害水安全。处理过程可有效降低DOC浓度,但消毒过程中难治理的腐殖物质与氯的反应产生疑似致癌消毒剂副产品(DBPs)。然而,设计的人工补给系统常常用于除去循环处理的废水中的DOC,对饮用水系统中是否存在着DBPs的研究做的很少。近些年来,测量有机物对胶体污染物的影响及其对致病微生物移动性的影响的能力支持人们了解含水层中的传输过程。此外,用于水生病原体的检测、识别和量化方面的聚合酶链反应技术的进展为调查DOC的特性及其对含水层污染物转移的影响提供了一种方法。本文总结了地下水体中DOC的发生以及能够间接影响人类健康的相关问题。

Resumo

Carbono orgânico dissolvido (COD) é composto por um grupo de diversos compostos, predominantemente substâncias húmicas, e é quase sempre um componente presente em águas subterrâneas naturais, até mesmo em climas extremos de ambientes áridos e hiperáridos. Apesar de frequentemente ser um parâmetro indicador da qualidade das águas subterrâneas, a complexidade da composição do COD e o comportamento da reação fazem com que as relações entre concentração e risco à saúde humana sejam difícieis de quantificar e poucos exemplos estão reportados na literatura. Concentrações medidas em águas subterrâneas naturais/não poluídas encontram-se tipicamente abaixo de 4 mg C/l, enquanto concentrações acima desses níveis geralmente indicam influências antropogênicas e/ou problemas de contaminação e potencialmente podem comprometer os parâmetros de potabilidade da água. Processos de tratamento são efetivos para redução de concentrações de COD, mas a reação da substância húmica refratária com cloro durante o processo de desinfecção produz subprodutos da desinfecção (DBPs) suspeitos de serem carcinogênicos. No entanto, apesar dos sistemas de recarga artificial serem comumente utilizados para remover COD das águas de reuso tratadas, pouca pesquisa tem sido conduzida na presença de DBPs em sistemas de água subterrânea potável. Nos últimos anos, a capacidade de medir a influência de matéria orgânica em contaminantes coloidais e sua influência na mobilidade de microorganismos patogênicos tem ajudado na compreensão de processos de transporte em aquíferos. Adicionalmente, avanços nas técnicas de reação em cadeia da polimerase usadas para detecção, identificação, e quantificação de patógenos transmitidos pela água, fornecem um método para investigar de forma segura o comportamento do COD e seus efeitos na transferência de contaminantes em aquíferos. Esse artigo fornece um sumário sobre a ocorrência de COD em corpos de águas subterrâneas e os problemas associados capazes de indiretamente afetar a saúde humana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaszadegan M, Stewart P et al (1999) A strategy for detection of viruses in groundwater by PCR. Applied Environ Microbiol 65(2):444–449

    Google Scholar 

  • Aiken G (2002) Organic matter in ground water. US Geological Survey Artificial Recharge Workshop Proceedings, Sacramento, CA, 2–4 April 2002

  • Anawar H, Akai J et al (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor 77(2):109–131

  • Aravenaa R, Wassenaar LI et al (1995) Distribution and isotopic characterization of methane in a confined aquifer in southern Ontario, Canada. J Hydrol 173(1):51–70

    Article  Google Scholar 

  • Artinger R, Buckau G et al (2000) Characterization of groundwater humic substances: influence of sedimentary organic carbon. Applied Geochem 15(1):97–116

    Article  Google Scholar 

  • Baker M, Valett H et al (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81(11):3133–3148

  • Barcelona MJ (1984) TOC determinations in ground water. Ground Water 22(1):18–24

    Article  Google Scholar 

  • Batiot C, Emblanch C et al (2003a) Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems. CR Geosci 335(2):205–214

    Article  Google Scholar 

  • Batiot C, Liñán C et al (2003b) Use of total organic carbon (TOC) as tracer of diffuse infiltration in a dolomitic karstic system: the Nerja Cave (Andalusia, southern Spain). Geophys Res Lett 30(22). 10.1029/2003GL018546

  • Bhattacharya P, Jacks G et al (2002) Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull Environ Contamin Toxicol 69(4):538–545

    Article  Google Scholar 

  • Borchardt MA, Bertz PD et al (2003) Incidence of enteric viruses in groundwater from household wells in Wisconsin. Applied Environ Microbiol 69(2):1172–1180

    Article  Google Scholar 

  • Borchardt MA, Spencer SK et al (2012) Viruses in nondisinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness. Environ Health Perspect 120(9):1272

    Article  Google Scholar 

  • Bradbury KR, Borchardt MA et al (2013) Source and transport of human enteric viruses in deep municipal water supply wells. Environ Sci Technol 47(9):4096–4103

    Article  Google Scholar 

  • Chapelle FH, Bradley PM et al (2009) Biochemical indicators for the bioavailability of organic carbon in ground water. Ground Water 47(1):108–121

    Article  Google Scholar 

  • Chapelle FH, Bradley PM et al (2013) Assessing the relative bioavailability of DOC in regional groundwater systems. Groundwater 51(3):363–372

    Google Scholar 

  • Chapelle FH, ShenY et al (2016) The removal kinetics of dissolved organic matter and the optical clarity of groundwater. Hydrogeol J 24(6):1413–1422

  • Chomycia JC, Hernes PJ et al (2008) Land management impacts on dairy-derived dissolved organic carbon in ground water. J Environ Quality 37(2):333–343

    Article  Google Scholar 

  • Christensen JB, Botma JJ et al (1999) Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2). Water Res 33(15):3231–3238

    Article  Google Scholar 

  • Clay D, Clay S et al (1996) Temporal variability of organic C and nitrate in a shallow aquifer. Water Res 30(3):559–568

    Article  Google Scholar 

  • Datry T, Malard F et al (2004) Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin. Sci Total Environ 329(1–3):215–229

    Article  Google Scholar 

  • Davis A, Kempton JH et al (1994) Groundwater transport of arsenic and chromium at a historical tannery, Woburn, Massachusetts, USA. Applied Geochem 9(5):569–582

    Article  Google Scholar 

  • De Man H, Van Den Berg H et al (2014) Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res 48:90–99

  • Drewes JE, Jekel M (1998) Behavior of DOC and AOX using advanced treated wastewater for groundwater recharge. Water Res 32(10):3125–3133

    Article  Google Scholar 

  • Evans C, Monteith D et al (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137(1):55–71

    Article  Google Scholar 

  • Flynn RM, Sinreich M (2010) Characterisation of virus transport and attenuation in epikarst using short pulse and prolonged injection multi-tracer testing. Water Res 44(4):1138–1149

    Article  Google Scholar 

  • Flynn RM, Yang X et al (2012) Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms. Environ Sci Technol 46(5):2583–2591

    Article  Google Scholar 

  • Flynn RM, Mallan G et al (2015) Characterizing aquifer heterogeneity using bacterial and bacteriophage tracers. J Environ Quality 44(5):1448–1458

    Article  Google Scholar 

  • Gibson KE, Schwab KJ et al (2012) Measuring and mitigating inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from large-volume environmental water samples. Water Res 46(13):4281–4291

    Article  Google Scholar 

  • Girones R, Ferrus M et al (2010) Molecular detection of pathogens in water–the pros and cons of molecular techniques. Water Res 44(15):4325–4339

  • Goldscheider N, Hunkeler D et al (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14(6):926–941

    Article  Google Scholar 

  • Goñi MA, Gardner IR (2003) Seasonal dynamics in dissolved organic carbon concentrations in a coastal water-table aquifer at the forest-marsh interface. Aquatic Geochem 9(3):209–232

    Article  Google Scholar 

  • Gopal K, Tripathy SS et al (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140(1–2):1–6

    Article  Google Scholar 

  • Grützmacher G, Kumar PJS et al (2013) Geogenic groundwater contamination: definition, occurrence and relevance for drinking water production. Zbl Geol Paläont Teil I 1:69–75

    Google Scholar 

  • Harvey CF, Swartz CH et al (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298(5598):1602–1606

    Article  Google Scholar 

  • Harvey RW, Barber LB (1992) Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater. J Contam Hydrol 9(1–2):91–103

    Article  Google Scholar 

  • Harvey RW, Metge DW et al (2010a) Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Res 44(4):1062–1071

    Article  Google Scholar 

  • Harvey RW, Metge DW et al (2010b) Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer. Water Res 44(4):1062–1071

    Article  Google Scholar 

  • Harvey RW, Metge DW et al (2011) Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer. Environ Sci Technol 45(8):3252–3259

    Article  Google Scholar 

  • Hunt RJ, Johnson WP (2016) Pathogen transport in groundwater systems: contrasts with traditional solute transport. Hydrogeol J doi:10.1007/s10040-016-1502-z

  • Hynds PD, Misstear BD, Gill LW (2014a) A quantitative risk assessment of vero-toxin producing E. coli (VTEC) in drinking water from unregulated groundwater sources in the Republic of Ireland. Hum Ecol Risk Assess J 20(6):1446–1468

  • Hynds PD, Thomas MK et al (2014b) Contamination of groundwater systems in the US and Canada by Enteric Pathogens, 1990–2013: a review and pooled-analysis. PloS one 9(5):e93301

    Article  Google Scholar 

  • Kalbitz K, Solinger S et al (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  Google Scholar 

  • Kim H-C, Yu M-J (2007) Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. J Hazard Mater 143(1–2):486–493

    Article  Google Scholar 

  • Kolka R, Weishampel P et al (2008) Measurement and importance of dissolved organic carbon. In: Hoover CM (ed) Field measurements for forest carbon monitoring: a landscape-scale approach. Springer, Dordrecht, The Netherlands, pp 171–176

    Google Scholar 

  • Kong F, Gowan S et al (2002) Serotype identification of group B streptococci by PCR and sequencing. J Clin Microbiol 40(1):216–226

  • Kretzschmar R, Sticher H et al (1997) Effects of adsorbed humic acid on surface charge and flocculation of kaolinite. Soil Sci Am J 61(1):101–108

    Article  Google Scholar 

  • Kretzschmar R, Borkovec M et al (1999) Mobile subsurface colloids and their role in contaminant transport. Adv Agron 66:121–193

    Article  Google Scholar 

  • Kuo H-W, Chen P-S et al (2010) Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter? J Toxicol Environ Health A 73(12):807–818

    Article  Google Scholar 

  • Liao Y-H, Chen C-C et al (2012) Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter? J Toxicol Environ Health A 75(6):340–350

    Article  Google Scholar 

  • Longnecker K, Kujawinski EB (2011) Composition of dissolved organic matter in groundwater. Geochim Cosmochim Acta 75(10):2752–2761

    Article  Google Scholar 

  • Macler AB, Merkle CJ (2000) Current knowledge on groundwater microbial pathogens and their control. Hydrogeol J 8(1):29–40

    Article  Google Scholar 

  • Metge DW, Harvey RW et al (2010) Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA. Water Res 44(4):1126–1137

    Article  Google Scholar 

  • Nuttall HE, Kale R (1994) Remediation of toxic particles from groundwater. J Hazard Mater 37(1):41–48

    Article  Google Scholar 

  • Oliver BG, Thurman EM et al (1983) The contribution of humic substances to the acidity of colored natural waters. Geochim Cosmochim Acta 47(11):2031–2035

    Article  Google Scholar 

  • Pabich WJ, Valiela I et al (2001) Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA. Biogeochemistry 55(3):247–268

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nature Rev Microbiol 3(7):537–546

    Article  Google Scholar 

  • Pieper AP, Ryan JN et al (1997) Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matter. Environ Sci Technol 31(4):1163–1170

    Article  Google Scholar 

  • Quanrud DM, Arnold RG et al (2003a) Fate of effluent organic matter during soil aquifer treatment: biodegradability, chlorine reactivity and genotoxicity. J Water Health 1(1):33–44

    Google Scholar 

  • Quanrud DM, Hafer J et al (2003b) Fate of organics during soil-aquifer treatment: sustainability of removals in the field. Water Res 37(14):3401–3411

    Article  Google Scholar 

  • Radstrom P, Knutsson R et al (2004) Pre-PCR processing. Molecular Biotechnol 26(2):133–146

    Article  Google Scholar 

  • Radstrom P, Lofstrom C et al (2008) Strategies for overcoming PCR inhibition. In: PCR primer, Cold Spring Harbor, New York. doi:10.1101/pdb.top20

  • Ramírez-Castillo FY, Loera-Muro A et al (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4(2):307–334

    Article  Google Scholar 

  • Rittmann BE, Stilwell D et al (2002) Treatment of a colored groundwater by ozone-biofiltration: pilot studies and modeling interpretation. Water Res 36(13):3387–3397

    Article  Google Scholar 

  • Rock C, Alum A et al (2010) PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy. Applied Environ Microbiol 76(24):8102–8109

    Article  Google Scholar 

  • Schrader C, Schielke A et al (2012) PCR inhibitors: occurrence, properties and removal. J Applied Microbiol 113(5):1014–1026

    Article  Google Scholar 

  • Sezen F, Aval E et al (2014) A large multi-pathogen gastroenteritis outbreak caused by drinking contaminated water from antique neighbourhood fountains, Erzurum city, Turkey, December 2012. Epidemiol Infect 143(04):704–710

    Article  Google Scholar 

  • Shain EB, Clemens JM (2008) A new method for robust quantitative and qualitative analysis of real-time PCR. Nucleic Acids Res 36(14):e91–e91

    Article  Google Scholar 

  • Shen Y, Chapelle FH et al (2015) Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 122(1):61–78

    Article  Google Scholar 

  • Sutlovic D, Gamulin S et al (2008) Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis 29(7):1467–1472

    Article  Google Scholar 

  • Tao S (1998) Spatial and temporal variation in DOC in the Yichun River, China. Water Res 32(7):2205–2210

    Article  Google Scholar 

  • Thayalakumaran T, Bristow KL et al (2008) Geochemical conditions in groundwater systems: implications for the attenuation of agricultural nitrate. Agric Water Manage 95(2):103–115

    Article  Google Scholar 

  • Thayalakumaran T, Lenahan MJ et al (2015) Dissolved organic carbon in groundwater overlain by irrigated sugarcane. Groundwater 53(4):525–530

    Article  Google Scholar 

  • Thurman EM (1985) Humic substances in groundwater. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic Substances in Soil, Sediment and Water. Wiley, New York, pp 87–103

  • Troester M, Brauch H-J et al (2016) Vulnerability of drinking water supplies to engineered nanoparticles. Water Res 96:255–279

    Article  Google Scholar 

  • Trumbore SE, Schiff SL et al (1992) Sources and transformation of dissolved organic carbon in the Harp Lake forested catchment: the role of soils. Radiocarbon 34(3):626–635

  • Uyak V, Ozdemir K et al (2008) Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants. Sci Total Environ 390(2):417–424

    Article  Google Scholar 

  • Wassenaara L, Aravena R et al (1991) Radiocarbon in dissolved organic carbon, a possible groundwater dating method: case studies from Western Canada. Water Resour Res 27(8):1975–1986

  • Wassenaara LI, Aravena R et al (1991) Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, central Ontario, Canada. Chem Geol 87(1):39–57

    Google Scholar 

  • Westerhoff P, Pinney M (2000) Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Manage 20(1):75–83

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. World Health Organization, Geneva, pp 303–304

  • Yang X, Flynn R et al (2010) Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand. Environ Pollut 158(12):3498–3506

    Article  Google Scholar 

  • Yang X, Flynn R et al (2011) Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid. Environ Pollut 159(7):1896–1904

    Article  Google Scholar 

  • Yang X, Liang D et al (2012) Quantifying the influence of EDTA on polymer nanoparticle deposition and retention in an iron-oxide-coated sand column. J Environ Monitor 14(9):2392–2398

    Article  Google Scholar 

  • Yang X, Zhang Y et al (2015) Interplay of natural organic matter with flow rate and particle size on colloid transport: experimentation, visualization, and modeling. Environ Sci Technol 49(22):13385–13393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Regan.

Additional information

Published in the special issue “Hydrogeology and Human Health”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regan, S., Hynds, P. & Flynn, R. An overview of dissolved organic carbon in groundwater and implications for drinking water safety. Hydrogeol J 25, 959–967 (2017). https://doi.org/10.1007/s10040-017-1583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1583-3

Keywords

Navigation