Skip to main content
Log in

Multi-objective design and extended optimization for developing a miniature light emitting diode pocket-sized projection display

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This research proposes a new extended optimization method for a miniature light emitting diode (LED) pocket-sized projection display, introducing integration of the Taguchi method and principal component analysis in order to optimize the multiple quality characteristics of an LED pocket-sized projection display. With the aid of interactive optimization, control factors with three different levels are carefully selected in the complicated preliminary experiments. A set of optimal design parameters is well selected for best results on the combined effects of the total luminous flux, illumination uniformity, and the packing size of the system. The selected control factors are inclusive of major lens and system specifications, such as lens overall length, X-CUB semi-aperture, length of light integrator, width of integrator, total internal reflection (TIR) prism entering semi-diameter for the TIR prism, air-gap of the TIR prism, and digital micromirror device (DMD) position; an L18 orthogonal array is applied and implemented in the experiments. According to experimental results, the optimal design parameters for the projection display can be determined as A1 (lens specifications: type I), B3 (lens length: overall length), C1 (X-CUB semi-aperture: 8 mm), D3 (integrator length: 36.6 mm), E2 (integrator width: 3.5 mm), F2 (TIR prism entering semi-diameter: 11 mm), G1 (TIR prism air-gap: 1.0024 mm), and H1 (DMD location: −0:5 mm). In addition, analysis of variance (ANOVA) is also employed to identify the factor A (lens specifications), factor D (integrator length), factor F (TIR prism entering semi-diameter), and factor G (TIR prism air-gap) as key parameters, which account for 71.82% of the total variance. The other factors when compared are found to have relatively weaker impacts on the process design. Furthermore, a confirmation experiment of the optimal design parameters shows that the aforesaid multiple performance characteristics are optimized to achieve the best levels. It is concluded that Taguchi method and principal component analysis (PCA) combine to optimize and then minimize the LED pocket-sized projection display system, which not only yields a sufficient understanding of the effects of control factors, but also produces an optimized design to ensure that the LED pocket-sized projection display system exhibits the best multiple performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Keuper, G. Harbers, and S. Paolini: SID Microdisplay Dig. Pap., Westminster, Colorado, 2003.

  2. H. Kanayama, M. Maeda, T. Miwa, T. Ikeda, H. Murata, and K. Chihara: Consumer Electronics, ICCE Dig. Tech. Pap., 2006, p. 127.

  3. T. Annen, W. Matusik, H. Pfister, H. P. Seidel, and M. Zwicker: Proc. XIII SPIE Conf. Stereoscopic Displays and Virtual Reality Systems, 2006, p. 231.

  4. J. Konrad and K. Agniel: IEEE Trans. Image Process. 15 (2006) 128.

    Article  Google Scholar 

  5. M. Keuper, G. Harbers, and S. Paolini: Proc. IDW, 2002, p. 5-1–504.

  6. P. Beardsley, C. Forlines, R. Raskar, and J. Van Baar: IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), 2005, Vol. 3, p. 112.

    Article  Google Scholar 

  7. M. Keuper, G. Harbers, and S. Paolini: SID Microdisplay Dig. Pap., Westminster, Colorado, 2002.

  8. M. H. Keuper, S. Paolini, G. Harbers, and P. Tsang: SID Int. Symp. Dig. Tech. Pap. 34 (2003) 713.

    Article  Google Scholar 

  9. H. Edwards and S. Matthew: Projection Displays (Wiley, New York, 1999) 2nd ed., p. 71.

    Google Scholar 

  10. Y. Wu and A. Wu: Taguchi Methods for Robust Design (ASME Press, New York, 2000) 1st ed., p. 125.

    Google Scholar 

  11. A. Alsaran, A. Celik, and C. Celik: Surf. Coat. Technol. 106 (2002) 219.

    Article  Google Scholar 

  12. L. J. Yang: J. Mater. Process. Technol. 113 (2001) 521.

    Article  Google Scholar 

  13. E. A. Elsayed and A. Chen: Int. J. Prod. Res. 31 (1993) 1117.

    Article  Google Scholar 

  14. L. I. Tong, C. T. Su, and C. H. Wang: Int. J. Qual. Reliab. Manage. 14 (1997) 367.

    Article  Google Scholar 

  15. R. K. Tomita, S. W. Park, and O. Sotomayor: Chem. Eng. J. 90 (2002) 283.

    Article  Google Scholar 

  16. L. Yoder: Texas Instruments, 2002, http://www.dlp.com

  17. Y. C. Fang, W. T. Lin, and H. L. Tsai: Proc. SPIE 6342 (2006) 63420Z.

  18. Lumileds: Secondary Optics Design Considerations for Super-Flux LEDs, 2002.

  19. Lumileds: Power light source Luxeon™ III Emitter, 2003.

  20. Lumileds: Power light source Luxeon™ Emitter, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Fong Tzeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, YC., Tzeng, YF. & Li, SX. Multi-objective design and extended optimization for developing a miniature light emitting diode pocket-sized projection display. OPT REV 15, 241–250 (2008). https://doi.org/10.1007/s10043-008-0038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-008-0038-4

Key words

Navigation