Skip to main content
Log in

Cross-shaped photoluminescence of excimers in perylene crystals

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Cross-shaped excimer (self-trapped exciton) luminescence from α- and β-perylene single crystals of 50–100 μm was found when they were excited at the center of the crystals with a continuous-wave (cw) laser resonant with the exciton absorption. The cross shape is formed by the two lines which intersect at the excited position and are perpendicular to the sides of the crystals of parallelogram shape. Luminescence is emitted from the excited spot and 4 side edges in the cross shape. The most striking feature is that the luminescence intensity at the edges was as high as or higher than at the excited spot. The possibility of the exciton propagation or the waveguide effect is rejected both experimentally and theoretically. This phenomenon can be reasonably explained only when the radiative transition probability of excimers is significantly enhanced at the crystals side edges than at the center due to the lower symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  2. Baldo, M.A., O’Brien, D.F., You, Y., Shoustikov, A., Sibley, S., Thompson, M.E., Forrest, S.R.: Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998)

    Article  ADS  Google Scholar 

  3. Bredas, J.L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009)

    Article  Google Scholar 

  4. Dubin, F., Melet, R., Barisien, T., Grousson, R., Legrand, L., Schott, M., Voliotis, V.: Macroscopic coherence of a single exciton state in an organic quantum wire. Nat. Phys. 2, 32–35 (2006)

    Article  Google Scholar 

  5. Chaudhuri, D., Li, D., Che, Y., Shafran, E., Gerton, J.M., Zang, L., Lupton, J.M.: Enhancing long-range exciton guiding in molecular nanowires by H-aggregation lifetime engineering. Nano Lett. 11, 488–492 (2011)

    Article  ADS  Google Scholar 

  6. Irkhin, P., Biaggio, I.: Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals. Phys. Rev. Lett. 107, 017402 (2011)

    Article  ADS  Google Scholar 

  7. Wan, Y., Guo, Z., Zhu, T., Yan, S., Johnson, J., Huang, L.: Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem 7, 785–792 (2015)

    Article  Google Scholar 

  8. Goetzberger, A., Greubel, W.: Solar energy conversion with fluorescent collectors. Appl. Phys. 14, 123–139 (1977)

    Article  ADS  Google Scholar 

  9. Giebink, N.C., Wiederrecht, G.P., Wasielewski, M.R.: Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators. Nat. Photon. 5, 694–701 (2011)

    Article  ADS  Google Scholar 

  10. Zhao, Y., Meek, G.A., Levine, B.G., Lunt, R.R.: Near-infrared harvesting transparent luminescent solar concentrators. Adv. Opt. Mater. 2, 606–611 (2014)

    Article  Google Scholar 

  11. Tanaka, J.: The electronic spectra of aromatic molecular crystals. II. The crystal structure and spectra of perylene. Bull. Chem. Soc. 36, 1237–1249 (1963)

  12. Fuke, K., Kaya, K., Kajiwara, T., Nagakura, S.: The polarized reflection and absorption spectra of perylene crystals in monomeric and dimeric forms. J. Mol. Spectrosc. 63, 98–107 (1976)

    Article  ADS  Google Scholar 

  13. Kobayashi, T.: The observation of the excimer formation process in pyrene and perylene crystals using a picosecond ruby laser and streak camera. J. Chem. Phys. 69, 3570–3574 (1978)

    Article  ADS  Google Scholar 

  14. Auweter, H., Ramer, D., Kunze, B., Wolf, H.C.: The dynamics of excimer formation in perylene crystals. Chem. Phys. Lett. 85, 325–329 (1982)

    Article  ADS  Google Scholar 

  15. Walker, B., Port, H., Wolf, H.C.: The two-step excimer formation in perylene crystals. Chem. Phys. 92, 177–185 (1985)

    Article  ADS  Google Scholar 

  16. Nishimura, H., Yamanaka, T., Mizuno, K., Iemura, M., Matsui, A.: Luminescence of free and self-trapped excitons in α- and β-perylene crystals. J. Phys. Soc. Jpn. 53, 3999–4008 (1984)

    Article  ADS  Google Scholar 

  17. Fujino, T., Tahara, T.: Femtosecond fluorescence up-conversion microscopy: exciton dynamics in alpha-perylene microcrystal. J. Phys. Chem. B 107, 5120–5122 (2003)

    Article  Google Scholar 

  18. Fujino, T., Fujima, T., Tahara, T.: Femtosecond fluorescence dynamics imaging sing a fluorescence up-conversion microscope. J. Phys. Chem. B 109, 15327–15331 (2005)

    Article  Google Scholar 

  19. Furube, A., Murai, M., Tamaki, Y., Watanabe, S., Katoh, R.: Effect of aggregation on the excited-state electronic structure of perylene studied by transient absorption spectroscopy. J. Phys. Chem. A 110, 6465–6471 (2006)

    Article  Google Scholar 

  20. Yago, T., Tamaki, Y., Furube, A., Katoh, R.: Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy. Phys. Chem. Chem. Phys. 10, 4435–4441 (2008)

    Article  Google Scholar 

  21. Katoh, R., Sinha, S., Murata, S., Tachiya, M.: Origin of the stabilization energy of perylene excimer as studied by fluorescence and near-IR transient absorption spectroscopy. J. Photochem. Photobiol. A. Chemistry 145, 23–34 (2001)

    Article  Google Scholar 

  22. Nakagawa, K., Numata, Y., Ishino, H., Tanaka, D., Kobayashi, T., Tokunaga, E.: Excimer luminescence from nonresonantly excited pyrene and perylene molecules in solution. J. Phys. Chem. A 117, 11449–11455 (2013)

    Article  Google Scholar 

  23. Ratner, A.M.: Coherent motion of two-site self-trapped excitons and energy transport in wide-band dielectrics. Phys. Lett. A 291, 165–174 (2001)

    Article  ADS  Google Scholar 

  24. Ishino, H., Nair, S.V., Nakagawa, K., Kobayashi, T., Tokunaga, E.: Effect of light scattering on the transmission spectra of organic nanocrystals. Appl. Phys. Lett. 99(5), 053304 1–3 (2011)

  25. Numata, Y., Nair, S.V., Nakagawa, K., Ishino, H., Kobayashi, T., Tokunaga, E.: Optical size effect of organic nanocrystals studied by absorption spectroscopy within an integrating sphere. Chem. Phys. Lett. 601, 128–133 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank S. V. Nair for providing the estimated values for the dielectric constants of α-perylene crystal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tokunaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, D., Numata, Y., Nakagawa, K. et al. Cross-shaped photoluminescence of excimers in perylene crystals. Opt Rev 23, 373–381 (2016). https://doi.org/10.1007/s10043-016-0214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0214-x

Keywords

Navigation