Skip to main content
Log in

Infrared small-target detection based on multi-directional multi-scale high-boost response

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

As of late, infrared (IR) small-target detection technology is broadly utilized in low-altitude monitoring frameworks, target-tracking frameworks, precise guidance frameworks and forest fire prevention frameworks. In this paper, we propose an infrared small-target detection strategy based on multi-directional multi-scale high-boost response (MDMSHB). First, an eight-direction filtering template is proposed, which can consider the directional information of the image and significantly suppress heterogeneous background such as cloud, linear interference and interface like ocean–sky background. Then, a map based on multi-directional multi-scale high-boost response (MDMSHB map) is calculated. Finally, a straightforward threshold segmentation technique is utilized to get the detection result. The simulation results comparing this method with the four state-of-the-art strategies in six sequences demonstrate that the proposed strategy can adequately suppress heterogeneous background and arbitrary noise. The approach can improve detection rate and reduce false alert rate as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bae, T.W., Zhang, F., Kweon, I.S.: Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 55(1), 137–145 (2012)

    Article  ADS  Google Scholar 

  2. Gao, C., Meng, D., Yang, Y., et al.: Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 22(12), 4996–5009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shao, X., Fan, H., Lu, G., et al.: An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 55(5), 403–408 (2012)

    Article  ADS  Google Scholar 

  4. Song, D., Tao, D.: Biologically inspired feature manifold for scene classification. IEEE Trans. Image Process. 19(1), 174–184 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Li, H., Wei, Y., Li, L., et al.: Infrared moving target detection and tracking based on tensor locality preserving projection. Infrared Phys. Technol. 53(2), 77–83 (2010)

    Article  ADS  Google Scholar 

  6. Shirvaikar, M.V., Trivedi, M.M.: A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans. Neural Netw. 6(1), 252–257 (1995)

    Article  Google Scholar 

  7. Shi, Y., Wei, Y., Yao, H., et al.: High-boost-based multiscale local contrast measure for infrared small target detection. IEEE Geoscience and Remote Sensing Letters. 15(1), 33–37 (2017)

    Article  ADS  Google Scholar 

  8. Chen, C.L.P., Li, H., Wei, Y., et al.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)

    Article  ADS  Google Scholar 

  9. Han, J., Ma, Y., Zhou, B., et al.: A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 11(12), 2168–2172 (2014)

    Article  ADS  Google Scholar 

  10. Han, J., Liang, K., Zhou, B., et al.: Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. Lett. 15(4), 612–616 (2018)

    Article  ADS  Google Scholar 

  11. Qi, S., Xu, G., Mou, Z., et al.: A fast-saliency method for real-time infrared small target detection. Infrared Phys. Technol. 77, 440–450 (2016)

    Article  ADS  Google Scholar 

  12. Qi, S., Ma, J., Li, H., et al.: Infrared small target enhancement via phase spectrum of quaternion Fourier transform. Infrared Phys. Technol. 62(2), 50–58 (2014)

    Article  ADS  Google Scholar 

  13. Kim, S., Lee, J.: Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track. Sensors 14(7), 13210–13242 (2014)

    Article  Google Scholar 

  14. Wang, X., Peng, Z., Zhang, P., et al.: Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 14(10), 1700–1704 (2017)

    Article  ADS  Google Scholar 

  15. Bai, X., Zhou, F.: Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn. 43(6), 2145–2156 (2010)

    Article  Google Scholar 

  16. Venkateswarlu, R.: Max–mean and max–median filters for detection of small targets. Proc. SPIE Int. Soc. Opt. Eng. 3809, 74–83 (1999)

    ADS  Google Scholar 

  17. Wang, X., Lv, G., Xu, L.: Infrared dim target detection based on visual attention. Infrared Phys. Technol. 55(6), 513–521 (2012)

    Article  ADS  Google Scholar 

  18. Han, J., Ma, Y., Huang, J., et al.: An infrared small target detecting algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 13(3), 452–456 (2016)

    Google Scholar 

  19. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  20. Boccignone, G., Chianese, A., Picariello, A.: Small Target Detect. Using Wavel. 2, 1776 (1998)

    Google Scholar 

  21. He, Y.J., Li, M., Zhang, J.L., et al.: Small infrared target detection based on low-rank and sparse representation. Infrared Phys. Technol. 68, 98–109 (2015)

    Article  ADS  Google Scholar 

  22. Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  23. Dai, Y., Wu, Y., Song, Y.: Infrared small target and background separation via column-wise weighted robust principal component analysis. Infrared Phys. Technol. 77, 421–430 (2016)

    Article  ADS  Google Scholar 

  24. Dai, Y., Wu, Y.: Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(8), 3752–3767 (2017)

    Article  ADS  Google Scholar 

  25. Wang, X., Peng, Z., Kong, D., et al.: Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote Sens. 55(10), 5481–5493 (2017)

    Article  ADS  Google Scholar 

  26. Wang, X., Peng, Z., Kong, D., et al.: Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 63, 1–9 (2017)

    Article  ADS  Google Scholar 

  27. Hou X, Zhang L. Saliency detection: A spectral residual approach. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  28. Chen, Y., Xin, Y.: An efficient infrared small target detection method based on visual contrast mechanism. IEEE Geosci. Remote Sens. Lett. 13(7), 962–966 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Qin, Y., Li, B.: Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 13(12), 1890–1894 (2016)

    Article  ADS  Google Scholar 

  30. Deng, H., Sun, X., Liu, M., et al.: Small infrared target detection based on weighted local difference measure. IEEE Trans. Geosci. Remote Sens. 54(7), 4204–4214 (2016)

    Article  ADS  Google Scholar 

  31. Bai, X., Bi, Y.: Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 56(4), 2452–2466 (2018)

    Article  ADS  Google Scholar 

  32. Liu, D., Cao, L., Li, Z., et al.: Infrared small target detection based on flux density and direction diversity in gradient vector field[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(7), 2528–2554 (2018)

    Article  ADS  Google Scholar 

  33. Gu, Y., Wang, C., Liu, B.X., et al.: A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications. IEEE Geosci. Remote Sens. Lett. 7(3), 469–473 (2010)

    Article  ADS  Google Scholar 

  34. Bi, Y., Bai, X., Jin, T., et al.: Multiple feature analysis for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 14(8), 1333–1337 (2017)

    Article  ADS  Google Scholar 

  35. Wang, P., Tian, J.W., Gao, C.Q.: Infrared small target detection using directional highpass filters based on LS-SVM. Electron Lett. 45(3), 156 (2009)

    Article  Google Scholar 

  36. Liu, M., Du, H., Zhao, Y., et al.: Image small target detection based on deep learning with SNR controlled sample generation. Current Trends in Computer Science and Mechanical Automation, vol. 1. Sciendo Migration, pp. 211–220 (2017)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61571096, 61775030) the Key Laboratory Fund of Beam Control, Chinese Academy of Sciences (2017LBC003) and Sichuan Science and Technology Program (2019YJ0167, 2019YFG0307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Peng.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Zhang, T., Huang, S. et al. Infrared small-target detection based on multi-directional multi-scale high-boost response. Opt Rev 26, 568–582 (2019). https://doi.org/10.1007/s10043-019-00543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00543-1

Keywords

Navigation