Skip to main content
Log in

Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

This article presents an SPR biosensor (Structure: SF10 prism-Au-ZnO-Graphene-PBS solution) to sense DNA hybridization using angular interrogation method at an operating wavelength of 633 nm. Its performance parameters, i.e., sensitivity (S), detection accuracy (DA), and figure of merit (FoM) are evaluated for different values of graphene’s chemical potential at room temperature. Sensitivity (141.9 °/RIU), DA (0.64 Degree−1) and FoM (9.14 RIU−1) are achieved for the proposed SPR biosensor at 0 eV chemical potential of graphene at the room temperature. The maximum sensitivity of 156.33°/RIU is obtained for the proposed SPR biosensor at 1.25 eV graphene’s chemical potential. The present article utilizes biocompatibility, chemical stability, and unique electrical and optical properties of both graphene and ZnO in SPR sensor for DNA hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hossain, M.B., Rana, M.M.: Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sens. Lett. 14, 1–8 (2015)

    Google Scholar 

  2. Homola, J., Sinclair, S.Y., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1–2), 3–15 (1999)

    Article  Google Scholar 

  3. Song, B., Li, D., Qi, W., Elstner, M., Fan, C., Fang, H.: Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem. Phys. Chem. 11, 585–589 (2010)

    Article  Google Scholar 

  4. Verma, A., Prakash, A., Tripathi, R.: Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015)

    Article  ADS  Google Scholar 

  5. Sharma, A.K., Dominic, A.: Influence of chemical potential on graphene-based SPR sensor’s performance. IEEE Photonics Technol. Lett. 30(1), 95–98 (2018)

    Article  ADS  Google Scholar 

  6. Prajapati, Y.K., Srivastava, A.: Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight. Superlattices Microstruct. 129, 152–162 (2019)

    Article  ADS  Google Scholar 

  7. Rahman, M., Anower, M., Hasan, M., Hossain, M., Haque, M.: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)

    Article  ADS  Google Scholar 

  8. Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor. Appl. Phys. A 124, 394 (2018)

    Article  ADS  Google Scholar 

  9. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121, 523–533 (2015)

    Article  ADS  Google Scholar 

  10. Agarwal, S., Giri, P., Prajapati, Y.K., Chakrabarti, P.: Effect of surface roughness on the performance of optical SPR sensor for sucrose detection: fabrication, characterization, and simulation study. IEEE Sens. J. 16, 8865–8873 (2016)

    Article  ADS  Google Scholar 

  11. Tabassum, R., Gupta, B.D.: Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrollidone supported zinc oxide thin films. Analyst 140, 1863–1870 (2015)

    Article  ADS  Google Scholar 

  12. Duenow, J.N., Gessert, T.A., Wood, D.M., Barnes, T.M., Young, M., To, B., Coutts, T.J.: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. J. Vac. Sci. Technol. A 25, 955 (2007). https://doi.org/10.1116/1.2735951

    Article  Google Scholar 

  13. Sharma, R.K., Patel, S., Pargaien, K.C.: Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. 3, 035005 (2012). https://doi.org/10.1088/2043-6262/3/3/035005

    Article  Google Scholar 

  14. Gupta, S.K., Joshi, A., Kaur, M.: Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2015)

    Article  Google Scholar 

  15. Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L.: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006)

    Article  ADS  Google Scholar 

  16. Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Electrical and Optical Properties. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  17. Mock, A.: Padé approximant spectral fit for FDTD simulation of graphene in the near infrared. Opt. Mater. Express. 2(6), 771–781 (2012)

    Article  ADS  Google Scholar 

  18. McGaughey, G.B., Gagne, M., Rappe, A.K.: π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998)

    Article  Google Scholar 

  19. Saha, S., Mehan, N., Sreenivas, K., Gupta, V.: Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl. Phys. Lett. 95, 071106 (2009). https://doi.org/10.1063/1.3206954

    Article  ADS  Google Scholar 

  20. Pal, S., Verma, A., Saini, J.P., Prajapati, Y.K.: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor. IET Optoelectron. 13, 2 (2019)

    Article  Google Scholar 

  21. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Article  ADS  Google Scholar 

  22. Xu, F., Das, S., Gong, Y., Liu, Q., Chien, H.-C., Chiu, H.-Y., Wu, J., Hui, R.: Complex refractive index tunability of graphene at 1550 nm wavelength. Appl. Phys. Lett. 106, 031109-4 (2015)

    ADS  Google Scholar 

  23. Maurya, J.B., Prajapati, Y.K.: A novel method to calculate beamwidth of SPR reflectance curve: a comparative analysis. IEEE Sens. Lett. 1(4), 1–4 (2017)

    Article  Google Scholar 

  24. Gorula, N., Sinha, A.K., Santra, S., Manna, Ray S.K.: Multifunctional Au–ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 4, 6483 (2014)

    ADS  Google Scholar 

  25. Rahman, M.S., Hasan, M.R., Rikta, K.A., Anower, M.S.: A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018)

    Article  ADS  Google Scholar 

  26. Sajal Agarwal, Y.K., Prajapati, J.B.Maurya: Effect of metallic adhesion layer thickness on the sensor performance. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported under Project No. 34/14/10/2017-BRNS/34285 by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Prajapati, Y.K. & Saini, J.P. Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization. Opt Rev 27, 57–64 (2020). https://doi.org/10.1007/s10043-019-00564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00564-w

Keywords

Navigation