Skip to main content
Log in

Point ahead angle prediction based on Kalman filtering of optical axis pointing angle in satellite laser communication

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Point ahead angle (PAA) prediction is important in space laser communication, but the existing methods have low accuracy and complicated calculation processes. In this paper, a new PAA prediction method is proposed based on Kalman filtering of the optical axis pointing trajectory. The proposed method uses the high precision of fine tracking to improve the accuracy of predictive filtering. Taking ground-satellite laser communication as the research background, the beam transmission process in a typical acquisition, pointing, and tracking (APT) system is derived, then the Kalman filter model is established, and a simulation of the model is performed. The results show that the PAA can be predicted accurately and the error of the PAA can be reduced effectively the maximum prediction error is 3.8 μrad only, and the method does not need to take the complex satellite perturbations into consideration. The proposed approach improves the accuracy of PAA prediction and contributes to the design of space laser communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, F., Han, J., Ruan, P.: Beam pointing analysis and a novel coarse pointing assembly design in space laser communication[J]. Optik 189, 130–147 (2019)

    ADS  Google Scholar 

  2. Xu, G.: Error performance of deep space optical communication with M-ary pulse position modulation over coronal turbulence channels[J]. Opt. Express 27(9), 13344–13356 (2019)

    ADS  Google Scholar 

  3. Li, Q., Xu, S., Yu, J., et al.: An improved method for the position detection of a quadrant detector for free space optical communication[J]. Sensors 19(1), 175 (2019)

    Google Scholar 

  4. Xu, G., Song, Z.: Effects of solar scintillation on deep space communications: challenges and prediction techniques[J]. IEEE Wirel. Commun. 26(2), 10–16 (2019)

    Google Scholar 

  5. Zhao, X., Liu, Y., Song, Y.: Line of sight pointing technology for laser communication system between aircrafts[J]. Opt. Eng. 56(12), 126107 (2017)

    ADS  Google Scholar 

  6. Sun, X., Skillman, D.R., Hoffman, E.D., et al.: Free space laser communication experiments from Earth to the lunar reconnaissance orbiter in lunar orbit[J]. Opt. Express 21(2), 1865 (2013)

    ADS  Google Scholar 

  7. Wuchenich, D.M.R., Mahrdt, C., Sheard, B.S., et al.: Laser link acquisition demonstration for the GRACE follow-on mission[J]. Opt. Express 22(9), 11351–11366 (2014)

    ADS  Google Scholar 

  8. Kern, R.H., Kugel, U.: Pointing, acquisition and tracking (PAT) subsystems and components for optical space communication systems[C]. Opt. Space Commun. Int. Soc. Opt. Photonics 1131, 97–107 (1989)

    ADS  Google Scholar 

  9. Greenwald, D., Mclaughlin, C.: A beacon tracker and point ahead system for optical communications[C]. Proc. SPIE 103(2), 268–276 (1989)

    Google Scholar 

  10. LeFebvre, M.J., Cuellar, E.L., Taylor, G.L., Stahl, S.M., Barrett, T.K., Sandler, D.G.: Point-ahead-compensated illumination tests using the 500-channel innovative science and technology experimental facility adaptive optics system[C]. Proc. SPIE 2201, 373–380 (1994)

    ADS  Google Scholar 

  11. Wang, M.L., Wang, X.F.: Analysis of lagrange interpolation algorithm for satellite position and velocity[J]. Aeronaut. Comput. Tech. 38(4), 14–17 (2008)

    Google Scholar 

  12. Dan, L.I., Yang, Y.: Prediction algorithm of close-orbit satellite based on orbit elements[J]. Opt. Precis. Eng. 24(10), 2450–2458 (2016)

    Google Scholar 

  13. Yan, L.J.: Research on Line-of-sight Pointing and Prediction Technology for Electro-optical Telescope[D], pp. 93–122. University of Chinese academy of sciences, Beijing (2019)

    Google Scholar 

  14. Lingjie, Y., Yongmei, H., Yahui, Z.: Using allan variance based semi-parameter model to calibrate pointing errors of Alt-az telescopes[J]. Appl. Sci. 8(4), 614 (2018)

    Google Scholar 

  15. Wilson K, Kenny J, Moynihan P.: Plans for a STRV-2 to AMOS high data rate bi-directional optical communications link (2000)

  16. Soysal, G., Efe, M.: Kalman filter aided cooperative optical beam tracking[J]. Radio Eng. 19(2), 242–248 (2010)

    Google Scholar 

  17. Liu, N.: Acquisition and Tracking Strategies for Satellite to Ground Optical Communication Systems[D], pp. 51–59. Ryerson University, Toronto (2018)

    Google Scholar 

  18. Ye, T., Zhou, F.: Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter[J]. Appl. Opt. 54(11), 3455 (2015)

    ADS  Google Scholar 

  19. Ljouad, T., Amine, A., Rziza, M.: A hybrid mobile object tracker based on the modified Cuckoo Search algorithm and the Kalman Filter[J]. Pattern Recogn. 47(11), 3597–3613 (2014)

    Google Scholar 

  20. Ye, X.W., Shen, F.: Orbit-dynamics model of spacecraft and error analysis of ahead-point[J]. Chin. J. Lasers 44(6), 50 (2017)

    Google Scholar 

  21. Shlomi, A., Kopeika, N.S.: Possible solutions to mitigate vibration effects in laser intersatellite links[C]. Proc. SPIE Int. Soc. Opt. Eng. 4489(3), 1436–1443 (2002)

    Google Scholar 

  22. Czarnomski, M., et al.: Laser communications for unmanned aircraft systems using differential GPS and IMU data. Proc. SPIE 7587, 758709 (2010)

    Google Scholar 

  23. Boucher, C., Altamimi, Z.: ITRS, PZ-90 and WGS 84: current realizations and the related transformation parameters[J]. J. Geod. 75(11), 613–619 (2001)

    ADS  Google Scholar 

  24. Fu, J.J., Yan, C.X., Liu, W., et al.: Stiffness calculation and optimal design of elliptical flexure hinges[J]. Opt. Precis. Eng. 7, 1703–1710 (2016)

    Google Scholar 

  25. Wu, R., Zhao, X., Tian, C., et al.: Improving line-of-sight pointing accuracy of laser communication system based on Kalman filter[J]. Opt. Eng. 58(1), 016110.1–016110.7 (2019)

    Google Scholar 

  26. Mahapatra, P.R., Mehrotra, K.: Mixed coordinate tracking of generalized maneuvering targets using acceleration and jerk models[J]. IEEE Trans. Aerosp. Electron. Syst. 36(3), 992–1000 (2000)

    ADS  Google Scholar 

  27. Liu, Y., Suo, J., Karimi, H.R., et al.: A Filtering Algorithm for Maneuvering Target Tracking Based on Smoothing Spline Fitting[J]. Abstr. Appl. Anal. 6, 1–6 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article was supported by the 135 project of Institute of Chinese academy of sciences (NO. Y655811213). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Furui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furui, Z., Ping, R. & Junfeng, H. Point ahead angle prediction based on Kalman filtering of optical axis pointing angle in satellite laser communication. Opt Rev 27, 447–454 (2020). https://doi.org/10.1007/s10043-020-00608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00608-6

Keywords

Navigation