Skip to main content
Log in

Underwater Acoustic Sensor with Fiber Bragg Grating

  • OPTICAL SYSTEMS AND TECHNOLOGIES
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A new type of underwater acoustic sensor is proposed with an optical fiber Bragg grating (FBG). Because of the photoelasticity with respect to the refractive index and the elasticity of the fiber, the sound pressure in water modulates the Bragg reflection wavelength and, in turn, the intensity of the laser light transmitted through the FBG fiber. Good linearity between the detected signal and the sound pressure is obtained in the range from 81 dB to 140 dB re 1 μPa. Since the upper and lower limits of the acoustic signal level for operation of the sensor are limited by the driving circuit and the transduction of the sound in water, the sensor is expected to operate with much larger dynamic range both at higher and lower pressure levels. Operation of the sensor is very stable with the insertion of optical isolators into the system, although without the isolators the output signal fluctuates at low frequency due to the Fabry-Perot interference effect between the FBG and the various facets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sugiyama, K. Okajima, S. Takahashi and T. Kikuchi: Proc. 11th Symposium Ultrasonic Electronics, Kyoto 1990, Jpn. J. Appl. Phys. 30 (1991) Suppl. 30-1, p. 99.

  2. T. Yoshino, K. Kurosawa, K. Itoh and T. Ose: IEEE J. Quantum Electron. QE-18 (1982) 1624.

    Article  Google Scholar 

  3. M. Vaziri and C-L. Chen: Appl. Opt. 32 (1993) 6399.

    Google Scholar 

  4. A. Wang, S. He, X. Fang, X. Jin and J. Lin: IEEE J. Lightwave Technol. 10 (1992) 1466.

    Article  Google Scholar 

  5. B. Culshaw and J.P. Dakin: Optical Fiber Sensors, ed. B. Culshaw and J. P. Dakin (Artech House, Boston, 1996) Vol. 3, Chap. 1, p. 1.

    Google Scholar 

  6. D.K.W. Lam and B.K. Garside: Appl. Opt. 20 (1981) 440.

    Google Scholar 

  7. T.A. Berkoff and A.D. Kersey: IEEE Photonics Technol. Lett. 8 (1996) 1677.

    Article  Google Scholar 

  8. S.M. Melle, K. Liu and R.M. Measures: Appl. Opt. 32 (1993) 3601.

    Google Scholar 

  9. L.A. Ferreira, A.B. Riheiro, J.L. Santos and F. Farahi: IEEE Photonics Technol. Lett. 8 (1996) 1519.

    Article  Google Scholar 

  10. T. Fukushima and T. Sakamoto: IEEE J. Lightwave Technol. 14 (1996) 867.

    Article  Google Scholar 

  11. L. Dong, P. Hua, T.A. Birks, L. Reekie and P. St. J. Russell: IEEE Photonics Technol. Lett. 8 (1996) 1656.

    Article  Google Scholar 

  12. W.B. Spillman, Jr. and D.H. McMahon: Appl. Opt. 21 (1982) 3511.

    Google Scholar 

  13. H.L. Price: J. Acoust. Soc. Am. 66 (1979) 976.

    Google Scholar 

  14. A. Hirose, N. Takahashi and S. Takahashi: Jpn. J. Appl. Phys. 36 (1997) 3348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, N., Hirose, A. & Takahashi, S. Underwater Acoustic Sensor with Fiber Bragg Grating. OPT REV 4, 691–694 (1997). https://doi.org/10.1007/s10043-997-0691-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-997-0691-z

Key words

Navigation