Skip to main content

Advertisement

Log in

Wearable and implantable pancreas substitutes

  • Review
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

A lifelong-implanted and completely automated artificial or bioartificial pancreas (BAP) is the holy grail for type 1 diabetes treatment, and could be a definitive solution even for other severe pathologies, such as pancreatitis and pancreas cancer. Technology has made several important steps forward in the last years, providing new hope for the realization of such devices, whose feasibility is strictly connected to advances in glucose sensor technology, subcutaneous and intraperitoneal insulin pump development, the design of closed-loop control algorithms for mechatronic pancreases, as well as cell and tissue engineering and cell encapsulation for biohybrid pancreases. Furthermore, smart integration of the mentioned components and biocompatibility issues must be addressed, bearing in mind that, for mechatronic pancreases, it is most important to consider how to recharge implanted batteries and refill implanted insulin reservoirs without requiring periodic surgical interventions. This review describes recent advancements in technologies and concepts related to artificial and bioartificial pancreases, and assesses how far we are from a lifelong-implanted and self-working pancreas substitute that can fully restore the quality of life of a diabetic (or other type of) patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Onkamo P, Väänänen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of type I diabetes—the analysis of the data on published incidence trends. Diabetologia. 1999;42:1395–403.

    Google Scholar 

  2. Howorka R, Wilinska ME, Chassin LJ, Dunger DB. Roadmap to the artificial pancreas. Diabetes Res Clin Pract. 2006;74:S178–82.

    Article  Google Scholar 

  3. Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery—the path to physiological glucose control. Adv Drug Deliv Rev. 2004;56:125–44.

    Article  PubMed  CAS  Google Scholar 

  4. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967;61:827–37.

    PubMed  CAS  Google Scholar 

  5. Selam JL, Charles MA. Devices for insulin administration. Diabetes Care. 1990;13:955–79.

    Article  PubMed  CAS  Google Scholar 

  6. Renard E. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons. J Diab Sci Tech. 2008;2:735–8.

    Google Scholar 

  7. Broussolle C, Jeandidier N, Hanaire-Broutin H. French multicentre experience with implantable insulin pumps. The EVADIAC Study Group. Lancet. 1994;343:514–5.

    Article  PubMed  CAS  Google Scholar 

  8. Renard E, Place J, Cantwell M, Chevassus H, Palerm CC. Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Diabetes Care. 2010;33:121–7.

    Article  PubMed  CAS  Google Scholar 

  9. Animas® Corporation. Insulin pump product information (updated March 8, 2012). http://www.animas.com.

  10. Medtronic, Inc. Insulin pump product information (updated March 8, 2012). http://www.medtronic.com.

  11. Pickup J, Keen H. Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care. 2002;25:593–8.

    Article  PubMed  Google Scholar 

  12. Renard E, Bouteleau S, Jacques-Apostol S, Lauton D, Gibert-Boulet F, Costalat G, Bringer J, Jaffiol C. Insulin underdelivery from implanted pumps using peritoneal route. Diabetes Care. 1996;19:812–7.

    Article  PubMed  CAS  Google Scholar 

  13. Olsen CL, Chan E, Turner DS. Insulin antibody responses after long-term intraperitoneal insulin administration via implantable programmable insulin delivery systems. Diabetes Care. 1994;17:169–76.

    Article  PubMed  CAS  Google Scholar 

  14. Renard E, Costalat G, Chevassus H, Bringer J. Artificial beta-cell: clinical experience toward an implantable closed-loop insulin delivery system. Diab Metabol. 2006;32:497–502.

    Article  CAS  Google Scholar 

  15. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91.

    Article  PubMed  CAS  Google Scholar 

  16. Adiga SP, Curtiss LA, Elam JW, Pellin MJ, Shih CC, Shih CM, Lin SJ, Su YY, Gittard SD, Zhang J, Narayan RJ. Nanoporous materials for biomedical devices. J Min Met Mater Soc. 2008;60:26–32.

    Article  CAS  Google Scholar 

  17. Cabral J, Moratti SC. Hydrogels for biomedical applications. Future Med Chem. 2011;3:1877–88.

    Article  PubMed  CAS  Google Scholar 

  18. Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mastrotaro JJ. The MiniMed continuous glucose monitoring system (CGMS). J Pediatr Endocrinol Metab. 1999;12:751–8.

    Google Scholar 

  20. Mastrotaro JJ. The MiniMed continuous glucose monitoring system. Diabetes Technol Ther. 2000;2:S13–8.

    Article  Google Scholar 

  21. Gerritsen M, Jansen JA, Lutterman JA. Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems. Ned Tijdschr Geneeskd. 2002;146:1313–6.

    PubMed  CAS  Google Scholar 

  22. Armour JC, Lucisano JY, McKean BD, Gough DA. Application of chronic intravascular blood glucose sensor in dogs. Diabetes. 1990;39:1519–26.

    Article  PubMed  CAS  Google Scholar 

  23. Gough DA, Armour JC. Development of the implantable glucose sensor. What are the prospects and why is it taking so long? Diabetes. 1995;44:1005–9.

    PubMed  CAS  Google Scholar 

  24. Skyler JS. Continuous glucose monitoring: an overview of its development. Diabetes Technol Ther. 2009;11:S5–10.

    Article  PubMed  CAS  Google Scholar 

  25. Rebrin K, Steil GM, Van Antwerp WP, Mastrotaro JJ. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am J Physiol. 1999;277:E561–71.

    PubMed  CAS  Google Scholar 

  26. Rebrin K, Steil GM. Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol Ther. 2000;2:461–72.

    Article  PubMed  CAS  Google Scholar 

  27. Steil GM, Rebrin K, Hariri F, Jinagonda S, Tadros S, Darwin C, Saad MF. Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia. 2005;48:1833–40.

    Article  PubMed  CAS  Google Scholar 

  28. Buckingham BA, Kollman C, Beck R, Kalajian A, Fiallo-Scharer R, Tansey MJ, Fox LA, Wilson DM, Weinzimer SA, Ruedy KJ, Tamborlane WV. Evaluation of factors affecting CGMS calibration. Diabetes Technol Ther. 2006;8:318–25.

    Article  PubMed  Google Scholar 

  29. Zucchini S, Scipione M, Balsamo C, Maltoni G, Rollo A, Molinari E, Mangoni L, Cicognani A. Comparison between sensor-augmented insulin therapy with continuous subcutaneous insulin infusion or multiple daily injections in everyday life: 3-day analysis of glucose patterns and sensor accuracy in children. Diabetes Technol Ther. 2011;13:1187–93.

    Article  PubMed  CAS  Google Scholar 

  30. Keenan DB, Grosman B, Clark HW, Roy A, Weinzimer SA, Shah RV, Mastrotaro JJ. Continuous glucose monitoring considerations for the development of a closed-loop artificial pancreas system. J Diabetes Sci Technol. 2011;5:1327–36.

    PubMed  Google Scholar 

  31. Keenan DB, Mastrotaro JJ, Zisser H, Cooper KA, Raghavendhar G, Lee WS, Yusi J, Bailey TS, Brazg RL, Shah R. Accuracy of the Enlite 6-day glucose sensor with Guardian and Veo calibration algorithms. Diabetes Technol Ther. 2012;14:225–31.

    Article  PubMed  CAS  Google Scholar 

  32. Renard E. Implantable continuous glucose sensors. Curr Diab Rev. 2008;4:169–74.

    Article  CAS  Google Scholar 

  33. Renard E, Shah R, Miller M, Kolopp M, Costalat G, Bringer J. Sustained safety and accuracy of central IV glucose sensors connected to implanted insulin pumps and short term closed-loop trials in diabetic patients. Diabetes. 2003;52:A36.

    Google Scholar 

  34. Magni L, Forgione M, Toffanin C, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C. Run-to-run tuning of model predictive control for type I diabetic subjects: an in silico trial. J Diabetes Sci. 2009;3:1091–8.

    Google Scholar 

  35. Lee H, Buckingham BA, Wilson DM, Bequette BW. A closed-loop artificial pancreas using model predictive control and a sliding meal size estimation. J Diabetes Sci Technol. 2009;3:1082–90.

    PubMed  Google Scholar 

  36. Cobelli C, Cobelli C, Cobelli C, Cobelli C, Cobelli C, Kovatchev BP. Diabetes: models, signals, and control. IEEE Rev Biomed Eng. 2009;2:54–96.

    Article  PubMed  Google Scholar 

  37. Bequette BW. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther. 2005;7:28–47.

    Article  PubMed  CAS  Google Scholar 

  38. Teixeira RE, Malin S. The next generation of artificial pancreas control algorithms. J Diabetes Sci Technol. 2008;2:105–12.

    PubMed  Google Scholar 

  39. El Youssef J, Castle J, Ward WK. A review of closed-loop algorithms for glcemic control in the treatment of type 1 diabetes. Algorithms. 2008;2:518–32.

    Article  CAS  Google Scholar 

  40. Steil GM, Rebrin K, Janowski R, Darwin C, Saad MF. Modeling beta-cell insulin secretion-implications for closed-loop glucose homeostasis. Diabetes Technol Ther. 2003;5:953–64.

    Article  PubMed  CAS  Google Scholar 

  41. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979;236:E667–77.

    PubMed  CAS  Google Scholar 

  42. Cobelli C, Renard E, Kovatchev B. Artificial pancreas: past, present, future. Diabetes. 2011;60:2672–82.

    Article  PubMed  CAS  Google Scholar 

  43. Hovorka R. Continuous glucose monitoring and closed-loop systems. Diabet Med. 2005;23:1–12.

    Article  Google Scholar 

  44. Kovatchev BP, Cobelli C, Renard E. Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diab Sci Technol. 2010;4:1374–81.

    Google Scholar 

  45. Hovorka R, Allen JM, Elleri D, Chassin LJ, Harris J, Xing D, Kollman C, Hovorka T, Larsen AMF, Nodale M, De Palma A, Wilinska ME, Acerini CL, Dunger DB. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet. 2010;375:743–51.

    Article  PubMed  CAS  Google Scholar 

  46. El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bi-hormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med. 2010;2:27ra27.

    Article  PubMed  CAS  Google Scholar 

  47. Castle JR, Engle JM, El Youssef J, Massoud RG, Yuen KC, Kagan R, Ward WK. Novel use of glucagon in a closed-loop system for prevention of hypoglycaemia in type 1 diabetes. Diabetes Care. 2010;33:7.

    Article  CAS  Google Scholar 

  48. Magni L, Raimondo DM, Bossi L, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C. Model predictive control of type 1 diabetes: an in silico trial. J Diabetes Sci Technol. 2007;1:12.

    Google Scholar 

  49. Kadish AH. Automation control of blood sugar. A servomechanism for glucose monitoring and control. Am J Med Electron. 1964;3:82–6.

    PubMed  CAS  Google Scholar 

  50. Fogt EJ, Dodd LM, Jenning EM, Clemens AH. Development and evaluation of a glucose analyzer for a glucose controlled insulin infusion system (Biostator). Clin Chem. 1978;24:1366–72.

    PubMed  CAS  Google Scholar 

  51. Clemens AH, Hough DL, D’Orazio PA. Development of the Biostator glucose clamping algorithm. Clin Chem. 1982;28:1899–904.

    PubMed  CAS  Google Scholar 

  52. Hoshino M, Haraguchi Y, Hirasawa H, Sakai M, Saegusa H, Hayashi K, Horita N, Ohsawa H. Close relationship of tissue plasminogen activator-plasminogen activator inhibitor-1 complex with multiple organ dysfunction syndrome investigated by means of the artificial pancreas. Crit Care. 2001;5:88–99.

    Article  PubMed  CAS  Google Scholar 

  53. Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Close relationship between strict blood glucose control, including suppression of blood glucose variability, and mortality reduction in acutely ill patients with glucose intolerance investigated by means of a bedside-type artificial pancreas. J Artif Organs. 2010;13:151–60.

    Article  PubMed  Google Scholar 

  54. Jaremko J, Rorstad O. Advances toward the implantable artificial pancreas for the treatment of diabetes. Diabetes Care. 1998;21:444–50.

    Article  PubMed  CAS  Google Scholar 

  55. Klonoff DC, Cobelli C, Kovatchev B, Zisser HC. Progress in development of an artificial pancreas. J Diabetes Sci Technol. 2009;3:1002–4.

    PubMed  Google Scholar 

  56. Kumareswaran K, Evans ML, Hovorka R. Artificial pancreas: an emerging approach to treat type 1 diabetes. Exp Rev Med Dev. 2009;6:401–10.

    Article  CAS  Google Scholar 

  57. Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Recent progress in mechanical artificial pancreas. J Artif Organs. 2009;12:141–9.

    Article  PubMed  CAS  Google Scholar 

  58. Dassau E, Atlas E, Phillip M. Closing the loop. Int J Clin Pract. 2011;65:20–5.

    Article  Google Scholar 

  59. Gregory JM, Moore DJ. Can technological solutions for diabetes replace islet cell function? Organogenesis. 2011;7:32–41.

    Article  PubMed  Google Scholar 

  60. Klonoff DC, Zimliki CL, Stevens A, Beaston P, Pinkos A, Choe SY, Arreaza-Rubín G, Heetderks W. Innovations in technology for the treatment of diabetes: clinical development of the artificial pancreas (an autonomous system). J Diabetes Sci Technol. 2011;5:804–26.

    PubMed  Google Scholar 

  61. Schaller HC, Schaupp L, Bodenlenz M, Wilinska ME, Chassin LJ, Wach P, Vering T, Hovorka R, Pieber TR. On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed-loop control of glucose: evaluation under fasting conditions in patients with type 1 diabetes. Diabet Med. 2006;23:90–3.

    Article  PubMed  CAS  Google Scholar 

  62. Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska ME. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas. 2004;25:905–20.

    Article  PubMed  Google Scholar 

  63. Kovatchev B, Cobelli C, Renard E, Anderson S, Breton M, Patek S, Clarke W, Bruttomesso D, Maran A, Costa S, Avogaro A, Dalla Man C, Facchinetti A, Magni L, De Nicolao G, Place J, Farret A. Multinational study of subcutaneous model-predictive closed-loop control in type 1 diabetes mellitus: summary of the results. J Diabetes Sci Technol. 2010;4:1374–81.

    PubMed  Google Scholar 

  64. Bruttomesso D, Farret A, Costa S, Marescotti MC, Vettore M, Avogaro A, Tiengo A, Dalla Man C, Place J, Facchinetti A, Guerra S, Magni L, De Nicolao G, Cobelli C, Renard E, Maran A. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J Diabetes Sci Technol. 2009;3:1014–21.

    PubMed  Google Scholar 

  65. Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing D, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, Wilinska ME, Evans ML. Overnight closed-loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. Brit Med J. 2011;342:d1911–2.

    Article  Google Scholar 

  66. Renard E. Clinical experience with an implanted closed-loop insulin delivery system. Arq Bras Endocrinol Metabol. 2008;52:349–54.

    Article  PubMed  Google Scholar 

  67. El-Khatib FH, Jiang J, Damiano ER. A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine. J Diabetes Sci Technol. 2009;3:789–803.

    PubMed  Google Scholar 

  68. El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med. 2010;2:2–27.

    Article  CAS  Google Scholar 

  69. Renard E, Place J, Cantwell M, Chevassus H, Palerm CC. Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Feasibility study testing a new model for the artificial pancreas. Diabetes Care. 2009;33:121–7.

    Article  PubMed  CAS  Google Scholar 

  70. Aberle I, Scholz U, Bach-Kliegel B, Fischer C, Gorny M, Langer K, Kliegel M. Psychological aspects in continuous subcutaneous insulin infusion: a retrospective study. J Psychol Inter Appl. 2009;143:147–60.

    Google Scholar 

  71. Hofer SE, Heidtmann B, Raile K, Fröhlich-Reiterer E, Lilienthal E, Berghaeuser MA, Holl RW. Discontinuation of insulin pump treatment in children, adolescents, and young adults. A multicenter analysis based on the DPV database in Germany and Austria. Pediatr Diabetes. 2010;11:116–21.

    Article  PubMed  CAS  Google Scholar 

  72. Reid G. Biofilms in infection disease and on medical devices. Int J Antimicrob Agents. 1999;11:223–6.

    Article  PubMed  CAS  Google Scholar 

  73. Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect. 2001;49:87–93.

    Article  PubMed  CAS  Google Scholar 

  74. Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59:227–38.

    PubMed  CAS  Google Scholar 

  75. Rodrigues LR. Inhibition of bacterial adhesion on medical devices. Adv Exp Med Biol. 2001;715:351–67.

    Article  CAS  Google Scholar 

  76. Bloom HL, Constantin L, Dan D, De Lurgio DB, El-Chami M, Ganz LI, Gleed KJ, Hackett FK, Kanuru NK, Lerner DJ, Rasekh A, Simons GR, Sogade FO, Sohail MR. Implantation success and infection in cardiovascular implantable electronic device procedures utilizing an antibacterial envelope. Pacing Clin Electrophysiol. 2011;34:133–42.

    Article  PubMed  Google Scholar 

  77. Palchesko RN, McGowan KA, Gawalt ES. Surface immobilization of active vancomycin on calcium aluminium oxide. Mater Sci Eng C. 2011;31:637–42.

    Article  CAS  Google Scholar 

  78. Braceras I, Azpiroz P, Briz N, Fratila RM, Oyarbide J, Ipiñazar E, Álvarez N, Atorrasagasti G, Aizpurua JM. Plasma polymerized silylated ciprofloxacin as an antibiotic coating. Plasma Process Polym. 2011;8:599–606.

    Article  CAS  Google Scholar 

  79. Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J, Heniford BT, Vertegel A. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob Agents Chemother. 2011;55:4379–85.

    Article  PubMed  CAS  Google Scholar 

  80. Xu LC, Siedlecki CA. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater. 2012;8:72–81.

    Article  PubMed  CAS  Google Scholar 

  81. Arciola CR, Montanaro L, Costerton JW. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs. 2011;34:727–36.

    Article  PubMed  CAS  Google Scholar 

  82. Lacy P, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.

    PubMed  CAS  Google Scholar 

  83. Kemp C, Knight M, Scharp D, Lacy P, Ballinger W. Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature. 1973;244:7.

    Article  Google Scholar 

  84. Scharp D, Murphy J, Newton W, Ballinger W, Lacy P. Transplantation of islets of Langerhans in diabetic rhesus monkeys. Surgery. 1975;77:100–5.

    PubMed  CAS  Google Scholar 

  85. Ryan EA, Lakey JRT, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock G, Larsen I, Shapiro AMJ. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50:710–9.

    Article  PubMed  CAS  Google Scholar 

  86. Hunkeler D. Bioartificial organs transplanted from research to reality. Nat Biotechnol. 1999;17:335–6.

    Article  PubMed  CAS  Google Scholar 

  87. Lanza RP, Sullivan SJ, Chick WL. Islet transplantation with immunoisolation. Diabetes. 1992;41:1503–10.

    Article  PubMed  CAS  Google Scholar 

  88. Silva AI, Matos AN, Brons IG, Mateus M. An overview of the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Med Res Rev. 2006;26:181–222.

    Article  PubMed  CAS  Google Scholar 

  89. Sumi S. Regenerative medicine for insulin deficiency: creation of pancreatic islets and bioartificial pancreas. J Hepatobiliary Pancreat Sci. 2011;18:6–12.

    Article  PubMed  Google Scholar 

  90. Monaco AP, Maki T, Ozato H, Carretta M, Sullivan SJ, Borland KM, Mahoney MD, Chick WL, Muller TE, Wolfrum J, Solomon B. Transplantation of islet allografts and xenografts in totally pancreatectomized diabetic dogs using the hybrid artificial pancreas. Ann Surg. 1991;214:339–62.

    Article  PubMed  CAS  Google Scholar 

  91. Orsetti A, Hagelsteen C, Zouari N. Temporary normalization of blood sugar, in a totally pancreatectomized dog, after placing an artificial insulin distributor. C R Seances Soc Biol Fil. 1977;171:858–64.

    PubMed  CAS  Google Scholar 

  92. Orsetti A, Guy C, Zouari N, Deffay R. Implantation of a bio-artificialinsulin distributor in dogs, using islets of Langerhans from different animal species. C R Seances Soc Biol Fil. 1978;172:44–150.

    Google Scholar 

  93. Chick WL, Perna JJ, Lauris V, Low D, Galletti PM, Panol G, Whittemore AD, Like AA, Colton K, Lysaght MJ. Artificial pancreas using living β-cells: effects on glucose homeostasis in diabetic rats. Science. 1977;197:780–2.

    Article  PubMed  CAS  Google Scholar 

  94. Sun AM, Parisius W, Healy GM, Vacek I, Macmorine HG. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes. 1977;26:1136–9.

    Article  PubMed  CAS  Google Scholar 

  95. Ikeda H, Kobayashi N, Tanaka Y, Nakaji S, Yong C, Okitsu T, Oshita M, Matsumoto S, Noguchi H, Narushima M, Tanaka K, Miki A, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Tanaka K, Jun HS, Tanaka N, Yoon JW. A newly developed bioartificial pancreas successfully controls blood glucose in totally pancreatectomized diabetic pigs. Tissue Eng. 2006;12:1799–809.

    Article  PubMed  CAS  Google Scholar 

  96. Ohgawara H, Miyazaki J, Karibe S, Katagiri N, Tashiro F, Akaike T. Assessment of pore size of a semipermeable membrane for immunoisolation or xenoimplantation of pancreatic B cells using a diffusion chamber. Transplant Proc. 1995;27:3319–20.

    PubMed  CAS  Google Scholar 

  97. Kessler L, Jesser C, Belcourt A, Pinget M. Influence of acinar tissuecontamination on encapsulated pancreatic islets: morphological and functional studies. Transplant. 1997;63:1537–40.

    Article  CAS  Google Scholar 

  98. Tze WJ, Tai J, Cheung SS, Bissada N, Starzl TE. Prolongation of pig islet xenograft survival in rats by local immunosuprression with FK 506. Transplant Proc. 1994;26:777–8.

    PubMed  CAS  Google Scholar 

  99. Rivereau AS, Darquy S, Chaillous L, Maugendre S, Gouin E, Reach G, Sai P. Reversal of diabetes in non-obese diabetic mice by xenografts of porcine islets entrapped in hollow fibres composed of polyacrylonitrile-sodium methallysulphonate copolymer. Diabetes Metab. 1997;23:205–12.

    PubMed  CAS  Google Scholar 

  100. Icard P, Penfornis F, Gotheil C, Boillot J, Cornec C, Barrat F, Altman JJ. Tissue reaction to implanted bioartificial pancreas in pigs. Transplant Proc. 1990;22:724–6.

    PubMed  CAS  Google Scholar 

  101. Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, Bonner-Weir S, Weir GC. Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplant. 2001;71:203–11.

    Article  CAS  Google Scholar 

  102. Wang W, Gu Y, Hori H, Sakurai T, Hiura A, Sumi S, Tabata Y, Inoue K. Subcutaneous transplantation of macroencapsulated porcine pancreatic endocrine cells normalizes hyperglycaemia in diabetic mice. Transplant. 2003;76:290–6.

    Article  CAS  Google Scholar 

  103. Macdonald RA. Presentation on behalf of Living Cell Technologies at Bio Investor Forum, October 2010. http://www.lctglobal.com/Media-And-News/2010/Press-Releases/.

  104. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplant. 2007;14:157–61.

    Article  Google Scholar 

  105. Uchiyama T, Watanabe J, Ishihara K. Pressure-induced change in permeation of insulin through a polymer alloy membrane for an implantable insulin pump. J Membr Sci. 2002;210:423–31.

    Article  CAS  Google Scholar 

  106. Schetky LM, Jardine P, Moussy F. A closed loop implantable artificial pancreas using thin film nitinol MEMS pumps. In: Pelton AR, Duerig T (eds) Proceedings of SMST 2003. Menlo Park, CA: SMST Society, Inc.; 2003.

  107. Acosta GM, Henderson JR, Haj NAA, Ruchti TL, Monfre SL, Blank TB, Hazen KH. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy. US Patent No. 7,133,710 B2; 2006.

  108. Ichimori S, Nishida K, Shimoda S, Sekigami T, Matsuo Y, Ichinose K, Shichiri M, Sakakida M, Araki E. Development of a highly responsive needle-type glucose sensor using polyimide for a wereable artificial endocrine pancreas. J Artif Organs. 2006;9:105–13.

    Article  PubMed  CAS  Google Scholar 

  109. Yoshimi Y, Narimatsu A, Nakayama K, Sekine S, Hattori K, Sakai K. Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer. J Artif Organs. 2009;12:264–70.

    Article  PubMed  CAS  Google Scholar 

  110. El-Khatib FH, Jiang J, Damiano ER. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. J Diabetes Sci Technol. 2007;1:181–92.

    PubMed  Google Scholar 

  111. Grant P. A new approach to diabetic control: fuzzy logic and insulin pump technology. Med Eng Phys. 2007;29:824–7.

    Article  PubMed  Google Scholar 

  112. Wang Y, Dassau E, Doyle FJ III. Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Trans Biomed Eng. 2010;57:211–9.

    Article  PubMed  Google Scholar 

  113. Ricotti L, Assaf T, Stefanini C, Menciassi A. System for controlled administration of a substance from a human-body-implanted infusion device. PCT Patent No. WO2012/011132A1; 2012.

  114. Chen C, Lin C, Hsu C. Wireless charging module and electronic apparatus. US Patent No. 20090289595; 2009.

  115. Vandevoorde G, Puers R. Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability. Sens Actuat A Phys. 2001;92:305–11.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Professor Claudio Cobelli, whose precious suggestions were of primary importance during the preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Ricotti or Arianna Menciassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricotti, L., Assaf, T., Dario, P. et al. Wearable and implantable pancreas substitutes. J Artif Organs 16, 9–22 (2013). https://doi.org/10.1007/s10047-012-0660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-012-0660-6

Keywords

Navigation