Skip to main content
Log in

Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Recent findings demonstrated the role of neurotransmitters in the aetiopathogenesis of sudden unexpected deaths in infancy. Although genes involved in serotonin metabolism have been proposed as risk factors for sudden infant death syndrome (SIDS), the contribution of additional neurotransmitters and genes different from the serotonin transporter (SLC6A4, 5-HTT) has not been investigated. Considering the common metabolic pathway and synergism between dopamine and serotonin, the role of dopamine transporter (SLC6A3, DAT) and monoamine oxidase A (MAOA) genes in SIDS and stillbirth (sudden intrauterine unexplained death, SIUD) was investigated. Genotypes and allelic frequencies of DAT and MAOA were determined in 20 SIDS and five stillbirth cases and compared with 150 controls. No association was found between DAT polymorphisms and SIDS either at genotype (P = 0.64) or allelic (P = 0.86) level; however, a highly significant association was found between MAOA genotypes (P = 0.047) and alleles (P = 0.002) regulating different expression patterns (3R/3R vs 3.5R/3.5R + 4R/4R) in SIDS + SIUD and controls. Analysis of combined 5-HTTLPR (serotonin transporter linked polymorphic region)/MAOA genotypes revealed that frequency of L/L-4R/4R genotype combination was eightfold higher in SIDS + SIUD than in controls (P < 0.001). Findings are discussed considering the metabolic association among DAT, 5-HTT and MAOA with special emphasis on the linked action of 5-HTT/MAOA in regulating serotonin metabolism of SIDS and SIUD infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Task Force on Sudden Infant Death Syndrome (2004) The changing concept of sudden infant death syndrome: diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk. Pediatrics 116:1245–1255. doi:10.1542/peds.2005-1499

    Article  Google Scholar 

  2. Hunt CE, Hauck FR (2006) Sudden infant death syndrome. Can Med Assoc J 174:1861–1869. doi:10.1503/cmaj.051671

    Article  Google Scholar 

  3. Nonnis Marzano F, Maldini M, Filonzi L, Lavezzi AM, Parmigiani S, Magnani C et al (2008) Genes regulating the serotonin metabolic pathway in the brain stem and their role in the etiopathogenesis of the sudden infant death syndrome. Genomics 91:485–491. doi:10.1016/j.ygeno.2008.01.010

    Article  CAS  PubMed  Google Scholar 

  4. Wilson CA, Chu MS (2005) Thermal insulation and SIDS—an investigation of selected Eastern and Western infant bedding combinations. Early Hum Dev 81:695–709. doi:10.1016/j.earlhumdev.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  5. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R et al (2006) Multiple serotoninergic brainstem abnormalities in sudden infant death syndrome. JAMA 296:2124–2132. doi:10.1001/jama.296.17.2124

    Article  CAS  PubMed  Google Scholar 

  6. Sawaguchi T, Namiki M (2003) Recent trend of the incidence of sudden infant death syndrome in Japan. Early Hum Dev 75:175–179. doi:10.1016/j.earlhumdev.2003.08.020

    Article  Google Scholar 

  7. World Health Organization (WHO) (2006) Neonatal and perinatal mortality: country, regional and global estimates, pp 1–75

  8. Matturri L, Ottaviani G, Lavezzi AM (2005) Techniques and criteria in pathologic and forensic medical diagnostics in sudden unexpected infant and perinatal death. Am J Clin Pathol 124:259–268. doi:10.1309/J6AREY41HKBEYVHX

    Article  PubMed  Google Scholar 

  9. Lavezzi AM, Ottaviani G, Mauri M, Matturri L (2004) Hypoplasia of the arcuate nucleus and maternal smoking during pregnancy in sudden unexplained perinatal and infant death. Neuropathology 24:284–289. doi:10.1111/j.1440-1789.2004.00558.x

    Article  PubMed  Google Scholar 

  10. Okado N, Narita M, Narita N (2002) A serotonin malfunction hypothesis by finding clear mutual relationships between several risk factors and symptoms associated with sudden infant death syndrome. Med Hypotheses 58:232–236. doi:10.1054/mehy.2001.1483

    Article  CAS  PubMed  Google Scholar 

  11. Weese-Mayer DE, Ackerman MJ, Marazita ML, Berry-Kravis EM (2007) Sudden infant death syndrome: review of implicated genetic factors. Am J Med Genet 143:771–788. doi:10.1002/ajmg.a.31722

    Article  Google Scholar 

  12. Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N (2001) Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics 107:690–692. doi:10.1542/peds.107.4.690

    Article  CAS  PubMed  Google Scholar 

  13. Weese-Mayer DE, Zhou L, Berry-Kravis EM, Maher BS, Silvestri JM, Marazita ML (2003) Association of the serotonin transporter gene with the sudden infant death syndrome: a haplotype analysis. Am J Med Genet 122A:238–245. doi:10.1002/ajmg.a.20427

    Article  PubMed  Google Scholar 

  14. Lin Z, Madras BK (2006) Human genetics and pharmacology of neurotransmitter transporters. Handb Exp Pharmacol 175:327–371. doi:10.1007/3-540-29784-7_16

    Article  CAS  PubMed  Google Scholar 

  15. Vanderbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p 15.3 and displays a VNTR. Genomics 14:1104–1106. doi:10.1016/S0888-7543(05)80138-7

    Article  Google Scholar 

  16. Gelernter J, Kranzler H, Cubells JF, Ichinose H, Nagatsu T (1998) DRD allele frequencies and linkage disequilibria, including the -141CIns/Del promoter polymorphism, in European-American, African-American, and Japanese subjects. Genomics 51:21–26. doi:10.1006/geno.1998.5264

    Article  CAS  PubMed  Google Scholar 

  17. Mill J, Asherson P, Browes C, D’Souza U, Craig I (2002) Expression of the dopamine transporter gene is regulated by the 3_UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 114:975–979. doi:10.1002/ajmg.b.10948

    Article  PubMed  Google Scholar 

  18. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, Lee KS, Linnoila M, Weinberger DR (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 22:133–139. doi:10.1016/S0893-133X(99)00099-8

    Article  CAS  PubMed  Google Scholar 

  19. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M et al (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  20. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279. doi:10.1007/s004390050816

    Article  CAS  PubMed  Google Scholar 

  21. Denney RM, Koch H, Craig IW (1999) Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 105:542–551. doi:10.1007/s004390051143

    CAS  PubMed  Google Scholar 

  22. Wu YH, Fischer DF, Swaab DF (2007) A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer’s disease patients. Brain Res 1167:13–19. doi:10.1016/j.brainres.2007.06.053

    Article  CAS  PubMed  Google Scholar 

  23. Hemmings SM, Kinnear CJ, Niehaus DJ, Moolman-Smook JC, Lochner C, Knowles JA et al (2003) Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder. Eur Neuropsychopharmacol 13:93–98. doi:10.1016/S0924-977X(02)00129-3

    Article  CAS  PubMed  Google Scholar 

  24. Gerra G, Garofano L, Pellegrini C, Bosari S, Zaimovic A, Moi G et al (2005) Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients. Addict Biol 10:275–281. doi:10.1080/13556210500223769

    Article  CAS  PubMed  Google Scholar 

  25. Shi SR, Cote RJ, Wu L, Liu C, Shi Y, Liu D et al (2002) DNA extraction from archival formalin-fixed, paraffin embedded tissue sections based on the antigen retrieval principle: heating under the influence of pH. J Histochem Cytochem 50:1005–1011

    Article  CAS  PubMed  Google Scholar 

  26. Moore DD (1999) Manipulation of DNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.2.1–2.2.3

    Google Scholar 

  27. Cohen IL, Liu X, Schutz C, White BN, Jenkins EC, Brown WT et al (2003) Association of autism severity with monoamine oxidase A functional polymorphism. Clin Genet 64:190–197. doi:10.1034/j.1399-0004.2003.00115.x

    Article  CAS  PubMed  Google Scholar 

  28. Das M, Bhowmik AD, Sinha S, Chattopadhyay A, Chaudhuri K, Singh M et al (2006) MAOA promoter polymorphism and attention deficit hyperactivity disorder (ADHD) in Indian children. Am J Med Genet B 141:637–642. doi:10.1002/ajmg.b.30385

    Article  Google Scholar 

  29. Malmberg K, Wargelius HL, Lichtenstein P, Oreland L, Larsson JO (2008) ADHD and disruptive behaviour scores—associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents. BMC Psychiatry 8:28. doi:10.1186/1471-244X-8-28

    Article  PubMed  PubMed Central  Google Scholar 

  30. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854. doi:10.1126/science.1072290

    Article  CAS  PubMed  Google Scholar 

  31. Opdal SH, Vege A, Rognum TO (2008) Serotonin transporter gene variation in sudden infant death syndrome. Acta Paediatr 97:861–865. doi:10.1111/j.1651-2227.2008.00813.x

    Article  CAS  PubMed  Google Scholar 

  32. Persico AM, Bird G, Gabbay FH, Uhl GR (1996) D2 dopamine receptor gene TaqI A1 and B1 restriction fragment length polymorphisms: enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol Psychiatry 40:776–784. doi:10.1016/0006-3223(95)00483-1

    Article  CAS  PubMed  Google Scholar 

  33. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D et al (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624. doi:10.1093/hmg/8.4.621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was financed with an Emilia Romagna regional grant named “Modernization Project 2007”. The authors are thankful to the Italian association “Seeds for SIDS”, to Dr. Nicola Franchini (University of Parma) for collaboration in laboratory activities and to Dr. Simone Codeluppi neuroscientist at Burnham Institute for Medical Research (La Jolla) for critical reading of the manuscript. The investigation has been carried out in agreement with current national laws on scientific research in medical topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nonnis Marzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filonzi, L., Magnani, C., Lavezzi, A.M. et al. Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis. Neurogenetics 10, 65–72 (2009). https://doi.org/10.1007/s10048-008-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0149-x

Keywords

Navigation