Skip to main content

Advertisement

Log in

A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder characterized by progressive cerebellar ataxia associated with macular degeneration. We recently described one of the largest series of patients with SCA7 that originated from a founder effect in a Mexican population, which allowed us to perform herein the first comprehensive clinical, neurophysiological, and genetic characterization of Mexican patients with SCA7. In this study, 50 patients, categorized into adult or early phenotype, were clinically assessed using standard neurological exams and genotyped using fluorescent PCR and capillary electrophoresis. Patients with SCA7 exhibited the classical phenotype of the disease characterized by cerebellar ataxia and visual loss; however, we reported, for the first time, frontal-executive disorders and altered sensory-motor peripheral neuropathy in these patients. Semiquantitative analysis of ataxia-associated symptoms was performed using Scale for the Assessment and Rating of Ataxia (SARA) and the Brief Ataxia Rating Scale (BARS) scores, while extracerebellar features were measured employing the Inventory of Non-ataxia Symptoms (INAS) scale. Ataxia rating scales confirmed the critical role size of cytosine-adenine-guanine (CAG) repeat size on age at onset and disease severity, while analysis of CAG repeat instability showed that paternal rather than maternal transmission led to greater instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Enevoldson TP, Sanders MD, Harding AE (1994) Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain 117(Pt3):445–460

    Article  PubMed  Google Scholar 

  2. David G, Dürr A, Stevanin G et al (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7(2):165–170

    Article  CAS  PubMed  Google Scholar 

  3. Garden GA, La Spada AR (2008) Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7(2):138–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. David G, Abbas N, Stevanin G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17(1):65–70

    Article  CAS  PubMed  Google Scholar 

  5. Martin J, Van Regemorter N, Del-Favero J et al (1999) Spinocerebellar ataxia type 7 (SCA7)—correlations between phenotype and genotype in one large Belgian family. J Neurol Sci 168(1):37–46

    Article  CAS  PubMed  Google Scholar 

  6. Moseley ML, Benzow KA, Shut LJ et al (1998) Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 families. Neurology 51(6):1666–1671

    Article  CAS  PubMed  Google Scholar 

  7. Benton CS, da Silva R, Rutledge SL et al (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51(4):1081–1086

    Article  CAS  PubMed  Google Scholar 

  8. Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD (2013) Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations and neuropathology. Cerebellum 12(2):176–193

    Article  PubMed Central  PubMed  Google Scholar 

  9. Magaña JJ, Tapia-Guerrero YS, Velázquez-Pérez L et al (2014) Analysis of CAG repeats in five SCA loci in Mexican population: epidemiological evidence of a SCA7 founder effect. Clin Genet 85(2):159–165

    Article  PubMed  Google Scholar 

  10. Magaña JJ, Gómez R, Maldonado-Rodríguez M et al (2013) Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population. Cerebellum 12(6):902–905

    Article  PubMed  Google Scholar 

  11. Schmahmann JD, Gardner R, MacMore J, Vangel MG (2009) Development of a brief ataxia rating scale (BARS) based on a modified form of ICARS. Mov Disord 24(12):1820–1828

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schmitz-Hubsch T, du Montcel ST, Baliko L et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720

    Article  CAS  PubMed  Google Scholar 

  13. Schmitz-Hubsch T, Coudert M, Bauer P et al (2008) Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 71(13):982–989

    Article  CAS  PubMed  Google Scholar 

  14. Denny-Brown D, David MD, Tyler HR (1982) Handbook of neurological examination and case recording. Harvard University Press, Cambridge

    Google Scholar 

  15. Visser M, Marinus J, Stiggelbout AM et al (2004) Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord 19(11):1306–1312

    Article  PubMed  Google Scholar 

  16. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545

    CAS  PubMed  Google Scholar 

  17. Torralva T, Roca M, Gleichegerrcht E, Lopez P, Manes F (2009) INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc 15(5):777–786

    Article  PubMed  Google Scholar 

  18. Velázquez-Pérez L, Sánchez-Cruz G, Canales-Ochoa N et al (2007) Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci 263(1–2):158–164

    Article  PubMed  Google Scholar 

  19. Dorschner MO, Barden D, Stephens K (2002) Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J Mol Diagn 4(2):108–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cagnoli C, Stevanin G, Michielotto C et al (2006) Large pathogenic expansions in the SCA2 and SCA7 genes can be detected by fluorescent repeat-primed polymerase chain reaction assay. J Mol Diagn 8(1):128–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jonasson J, Juvonen V, Sistonen P et al (2000) Evidence for a common spinocerebellar ataxia. Eur J Hum Genet 8(12):918–922

    Article  CAS  PubMed  Google Scholar 

  22. Bryer A, Krause A, Bill P et al (2003) The hereditary adult-onset ataxias in South Africa. J Neurol Sci 216(1):47–54

    Article  PubMed  Google Scholar 

  23. Klockgether T, Lüdtke R, Kramer B et al (1998) The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121(Pt4):589–600

    Article  PubMed  Google Scholar 

  24. Holmberg M, Duyckaeerts C, Durr A et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7(5):913–918

    Article  CAS  PubMed  Google Scholar 

  25. Rüb U, Schöls L, Paulson H et al (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66

    Article  PubMed  Google Scholar 

  26. Seidel K, Siswanto S, Brunt ER et al (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124(1):1–21

    Article  CAS  PubMed  Google Scholar 

  27. Martin JJ (2012) Spinocerebellar ataxia type 7. Handb Clin Neurol 103:475–491

    Article  PubMed  Google Scholar 

  28. Hernández-Castillo CR, Alcauter S, Gálvez V et al (2013) Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 28(12):1708–1716

    Article  PubMed  Google Scholar 

  29. Jobsis GJ, Weber JW, Barth PG et al (1997) Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedigrees and genetic linkage to 3p12-p21.1. J Neurol Neurosurg Psychiatry 62(4):367–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yefimova MG, Messaddeq N, Karam A et al (2010) Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in spinocerebellar ataxia 7 mouse retina. Neurobiol Dis 40(1):311–324

    Article  CAS  PubMed  Google Scholar 

  31. Geiner S, Horn AK, Wadia NH, Sakai H, Buttner-Ennever JA (2008) The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog Brain Res 171:575–581

    Article  CAS  PubMed  Google Scholar 

  32. Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM (2011) A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum 10(2):184–198

    Article  PubMed  Google Scholar 

  33. Velázquez-Pérez L, Seifried C, Santos-Falcón N et al (2004) Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia type 2 (SCA2). Ann Neurol 56(3):444–447

    Article  PubMed  Google Scholar 

  34. Silva-Zolezzi I, Hidalgo-Miranda A, Estrada-Gil J et al (2009) Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico. Proc Natl Acad Sci U S A 106(21):8611–8616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sokolovski N, Cook A, Hunt H et al (2010) A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1 and 7. Behav Neurol 23(1–2):17–29

    Article  Google Scholar 

  36. Jacobi H et al (2011) The natural history of spinocerebellar ataxia type 1, 2, 3 and 6: a 2-year follow-up study. Neurology 77(11):1035–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Oh AK, Jacobson KM, Jen JC et al (2001) Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol 49(6):801–804

    Article  CAS  PubMed  Google Scholar 

  38. Velázquez Pérez L, Rodríguez Labrada R, Canales Ochoa N et al (2010) Progression markers of spinocerebellar ataxia type 2. A twenty years neurophysiological follow up study. J Neurol Sci 290(1–2):22–26

    Article  PubMed  Google Scholar 

  39. Schöls L, Linnemann C, Globas C (2008) Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum 7(2):198–203

    Article  PubMed  Google Scholar 

  40. Netravathi M, Pal PK, Purushottam M, Thennarasu K, Mukherjee M, Jain S (2009) Spinocerebellar ataxias types 1, 2 and 3: age adjusted clinical severity of disease at presentations correlates with size of CAG repeat lengths. J Neurol Sci 277(1–2):83–86

    Article  CAS  PubMed  Google Scholar 

  41. Magaña JJ, Velázquez-Pérez L, Cisneros B (2013) Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 47(1):90–104

    Article  PubMed  Google Scholar 

  42. Cancel G, Abbas N, Stevanin G et al (1995) Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus. Am J Hum Genet 57(4):809–816

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Telenius H, Almqvist E, Kremer B et al (1995) Somatic mosaicism in sperm is associated with intragenerational (CAG)n changes in Huntington disease. Hum Mol Genet 4(2):189–195

    Article  CAS  PubMed  Google Scholar 

  44. Ueno S, Kondon K, Kotani Y et al (1995) Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA). Hum Mol Genet 4(4):663–666

    Article  CAS  PubMed  Google Scholar 

  45. Pulst SM, Santos N, Wang D et al (2005) Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain 128(Pt 10):2297–2303

    Article  PubMed  Google Scholar 

  46. Socal MP, Emmel VE, Rieder CR, Hilbig A, Saraiva-Pereira ML, Jardim LB (2009) Intrafamilial variability of Parkinson phenotype in SCAs: novel cases due to SCA2 and SCA3. Parkinsonism Relat Disord 15(5):374–378

    Article  CAS  PubMed  Google Scholar 

  47. van Der Heijden CD, Rijpkema M, Árias-Vásquez A et al (2013) Genetic variation in ataxia gene ATXN7 influences cerebellar grey matter volume in healthy adults. Cerebellum 12(3):390–395

    Article  CAS  PubMed  Google Scholar 

  48. Gouw LG, Castañeda MA, McKenna CK et al (1998) Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 7(3):525–532

    Article  CAS  PubMed  Google Scholar 

  49. Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12(1):2–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Secretary of Science, Technology and Innovation of the Federal District (grant number PICSA12-162) to JJ-M and CONACyT fellowship 203861 to L-VP and B-C. Our paper is dedicated to the patients and the members of SCA-affected families. We also thank Hernán Cortés and Joan Jano-Ito for the technical assistance.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Cisneros or J. J. Magaña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure

Correlation between different scales of semiquantitative assessment of cerebellar and non-ataxia symptoms. (GIF 19 kb)

High resolution image (TIFF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Pérez, L., Cerecedo-Zapata, C.M., Hernández-Hernández, O. et al. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 16, 11–21 (2015). https://doi.org/10.1007/s10048-014-0424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0424-y

Keywords

Navigation