Skip to main content
Log in

DSCVR: designing a commodity hybrid virtual reality system

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

This paper presents the design considerations, specifications, and lessons learned while building DSCVR, a commodity hybrid reality environment. Consumer technology has enabled a reduced cost for both 3D tracking and screens, enabling a new means for the creation of immersive display environments. However, this technology also presents many challenges, which need to be designed for and around. We compare the DSCVR System to other existing VR environments to analyze the trade-offs being made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Livingston et al. provide evaluations for the noise, accuracy, resolution, and latency of the skeleton-tracking software provided by Kinect (Livingston et al. 2012).

  2. Febretti et al. (2013) list the cost per megapixel as 14,000. However, dividing the listed cost by the listed megapixels gives a number of approximately $25,000. We have chosen to use the self-reported number in the paper for our analysis.

References

  • Ainsworth RA, Sandin DJ, Schulze JP, Prudhomme A, DeFanti TA, Srinivasan M (2011) Acquisition of stereo panoramas for display in vr environments

  • Amatriain X, Kuchera-Morin J, Hollerer T, Pope ST (2009) The allosphere: immersive multimedia for scientific discovery and artistic exploration. IEEE MultiMedia 16(2):0064–75

    Article  Google Scholar 

  • Arthur K (1996) Effects of field of view on task performance with head-mounted displays. In: Conference companion on human factors in computing systems. ACM, New York, pp 29–30

  • Avery B, Thomas BH, Velikovsky J, Piekarski W (2005) Outdoor augmented reality gaming on five dollars a day. In: Proceedings of the 6th Australasian conference on User interface—volume 40, AUIC ’05, pp 79–88. Australian Computer Society Inc, Darlinghurst, Australia

  • Bacim F, Ragan E, Scerbo S, Polys NF, Setareh M, Jones BD (2013) The effects of display fidelity, visual complexity, and task scope on spatial understanding of 3d graphs. In: Proceedings of graphics interface 2013, GI ’13, pp 25–32. Canadian Information Processing Society, Toronto, Ont., Canada

  • Basu A, Saupe C, Refour E, Raij A, Johnsen K (2012) Immersive 3dui on one dollar a day. In: 2012 IEEE symposium on 3D user interfaces (3DUI), pp 97–100

  • Bayer, BE (1976) Color imaging array. US Patent 3,971,065

  • Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7):36–43

    Article  Google Scholar 

  • Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL (2012) Validity of the microsoft kinect for assessment of postural control. Gait Posture 36(3):372–377

    Article  Google Scholar 

  • CruzNeira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experience automatic virtual environment. Commun ACM 35(6):64–72

    Article  Google Scholar 

  • Cruz-Neira C, Sandin DJ, DeFanti TA (1993) Surround-screen projection-based virtual reality: the design and implementation of the cave. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques. ACM, New York, pp 135–142

  • DeFanti TA, Acevedo D, Ainsworth RA, Brown MD, Cutchin S, Dawe G, Doerr KU, Johnson A, Knox C, Kooima R et al (2011a) The future of the cave. Cent Eur J Eng 1(1):16–37

    Article  Google Scholar 

  • DeFanti T, Acevedo D, Ainsworth R, Brown M, Cutchin S, Dawe G, Doerr KU, Johnson A, Knox C, Kooima R, Kuester F, Leigh J, Long L, Otto P, Petrovic V, Ponto K, Prudhomme A, Rao R, Renambot L, Sandin D, Schulze J, Smarr L, Srinivasan M, Weber P, Wickham G (2011b) The future of the cave. Cent Eur J Eng 1(1):16–37

    Article  Google Scholar 

  • Doerr K, Kuester F (2011) Cglx: a scalable, high-performance visualization framework for networked display environments. IEEE Trans Vis Comput Graph 17(3):320–332

    Article  Google Scholar 

  • Eilemann S, Makhinya M, Pajarola R (2009) Equalizer: a scalable parallel rendering framework. IEEE Trans Vis Comput Graph 15(3):436–452

    Article  Google Scholar 

  • Febretti A, Nishimoto A, Thigpen T, Talandis J, Long L, Pirtle JD, Peterka T, Verlo A, Brown M, Plepys D, Sandin D, Renambot L, Johnson A, Leigh J (2013) CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: M Dolinsky, IE McDowall (eds) IS&T/SPIE Electronic Imaging, pp 864903–864903–12. SPIE

  • Heddle B. The New Generation Kinect for Windows Sensor is Coming Next Year - Kinect for Windows Product Blog—Site Home—MSDN Blogs. http://blogs.msdn.com/b/kinectforwindows/archive/2013/05/23/the-new-generation-kinect-for-windows-sensor-is-coming-next-year.aspx

  • Higgins T (2010) Unity-3d game engine

  • Hong H, Jang J, Lee D, Lim M, Shin H (2010) Analysis of angular dependence of 3-d technology using polarized eyeglasses. J Soc Inf Disp 18(1):8–12

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) Vmd: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  • Johnson GP, Abram GD, Westing B, Navr’til P, Gaither K (2012) Displaycluster: an interactive visualization environment for tiled displays. In: 2012 IEEE international conference on cluster computing (CLUSTER), pp 239–247. IEEE

  • Kim T, Ra JM, Lee JH, Moon SH, Choi KY (2011) 3d Crosstalk compensation to enhance 3d image quality of plasma display panel. IEEE Trans Consum Electr 57(4):1471–1477. doi:10.1109/TCE.2011.6131113

    Article  Google Scholar 

  • Knox C, Brown M, Doerr K, Jenks S, Zender C, Kuester F (2005) Simultaneous visualization of the ipcc ar4 model ensemble on an extremely high resolution display wall (hiperwall). In: AGU fall meeting abstracts, 1:1140

  • Laha B, Sensharma K, Schiffbauer J, Bowman D (2012) Effects of immersion on visual analysis of volume data. IEEE Trans Vis Comput Gr 18(4):597–606. doi:10.1109/TVCG.2012.42

    Article  Google Scholar 

  • Lange B, Koenig S, Chang CY, McConnell E, Suma E, Bolas M, Rizzo A (2012) Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil 34(22):1863–1870

    Article  Google Scholar 

  • Leigh J, Johnson A, Renambot L, Peterka T, Jeong B, Sandin DJ, Talandis J, Jagodic R, Nam S, Hur H et al (2013) Scalable resolution display walls. Proc IEEE 101(1):115–129

    Article  Google Scholar 

  • Livingston M, Sebastian J, Ai Z, Decker J (2012) Performance measurements for the microsoft kinect skeleton. In: Virtual reality short papers and posters (VRW), 2012 IEEE, pp 119–120

  • Luo J, Qin K, Zhou Y, Mao M, Li R (2010) Gpu rendering for tiled multi-projector autostereoscopic display based on chromium. Vis Comput 26(6–8):457–465

    Article  Google Scholar 

  • Margolis T, DeFanti TA,  Dawe G, Prudhomme A, Schulze JP, Cutchin S (2011) Low cost heads-up virtual reality (HUVR) with optical tracking and haptic feedback. IS&T/SPIE Electronic Imaging, p 786417

  • McMahan RP, Bowman DA, Zielinski DJ, Brady RB (2012) Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans Vis Comput Graph 18(4):626–633

    Article  Google Scholar 

  • Meyer-Spradow J, Ropinski T, Mensmann J, Hinrichs K (2009) Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput Graph Appl 29(6):6–13

    Article  Google Scholar 

  • MYO—Gesture control armband by Thalmic Labs. https://www.thalmic.com/en/myo/

  • Pausch R (1991) Virtual reality on five dollars a day. Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’91. ACM, New York, NY, USA, pp 265–270

  • Polys NF, Kim S, Bowman DA (2007) Effects of information layout, screen size, and field of view on user performance in information-rich virtual environments. Comput Animat Virtual Worlds 18(1):19–38. doi:10.1002/cav.159.

  • Ponto K, Wypych T, Doerr K, Yamaoka S, Kimball J, Kuester F (2009) Videoblaster: a distributed, low-network bandwidth method for multimedia playback on tiled display systems. In: 11th IEEE international symposium on multimedia, 2009. ISM’09, pp 201–206. IEEE

  • Ponto K, Doerr K, Kuester F (2010) Giga-stack: a method for visualizing giga-pixel layered imagery on massively tiled displays. Future Gener Comput Syst 26(5):693–700

    Article  Google Scholar 

  • Prabhat, Forsberg A, Katzourin M, Wharton K, Slater M (2008) A comparative study of desktop, fishtank, and cave systems for the exploration of volume rendered confocal data sets. IEEE Trans Vis Comput Gr 14(3):551–563. doi:10.1109/TVCG.2007.70433

    Article  Google Scholar 

  • Ragan E, Kopper R, Schuchardt P, Bowman D (2013) Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task. IEEE Trans Vis Comput Gr 19(5):886–896. doi:10.1109/TVCG.2012.163

    Article  Google Scholar 

  • Rash C, McLean W, Mozo B, Licina J, McEntire B (1999) Human factors and performance concerns for the design of helmet-mounted displays. In: RTO HFM symposium on current aeromedical issues in rotary wing operation

  • Renambot L, Jeong B, Hur H, Johnson A, Leigh J (2009) Enabling high resolution collaborative visualization in display rich virtual organizations. Future Gener Comput Syst 25(2):161–168

    Article  Google Scholar 

  • Rosson MB, Carroll JM (2001) Usability engineering: scenario-based development of human-computer interaction. Elsevier, Amsterdam

    Google Scholar 

  • Sampaio PN, de Freitas RIC, Cardoso GNP (2008) Ogre-multimedia: an api for the design of multimedia and virtual reality applications. In: Knowledge-based intelligent information and engineering systems. Springer, New York, pp 465–472

  • Schou T, Gardner HJ (2007) A Wii remote, a game engine, five sensor bars and a virtual reality theatre. In: OZCHI ’07. ACM Press, New York, pp 231–234

  • Shupp L, Andrews C, Dickey-Kurdziolek M, Yost B, North C (2009) Shaping the display of the future: the effects of display size and curvature on user performance and insights. Hum Comput Interact 24(1–2):230–272

    Article  Google Scholar 

  • Simon A, Gobel M (2002) The i-cone trade;—a panoramic display system for virtual environments. In: Proceedings of the 10th Pacific conference on computer graphics and applications, 2002, pp 3–7. doi:10.1109/PCCGA.2002.1167834

  • STEM System: The Best Way to Interact with Virtual Worlds by Sixense—Kickstarter. http://www.kickstarter.com/projects/89577853/stem-system-the-best-way-to-interact-with-virtual

  • Taylor II RM, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT (2001) Vrpn: a device-independent, network-transparent vr peripheral system. In: Proceedings of the ACM symposium on Virtual reality software and technology. ACM, New Year, pp 55–61

  • Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: IEEE symposium on 3D user interfaces, 2009. 3DUI 2009, pp 43–50. IEEE

  • Tracked THE Device Driver Software for Immersive Displays. http://www.mechdyne.com/trackd.aspx

  • Wells MJ, Venturino M (1990) Performance and head movements using a helmet-mounted display with different sized fields-of-view. Opt Eng 29(8):870–877

    Article  Google Scholar 

  • Williams SC (2013) Immersive visualization. Proc Natl Acad Sci 110(12):4438–4438

    Article  Google Scholar 

  • Woods A (2010) Understanding crosstalk in stereoscopic displays. In: Keynote presentation at the three-dimensional systems and applications conference. Tokyo, Japan, pp 19–21

Download references

Acknowledgments

We would like to acknowledge the support of the Living Environments Laboratory, the School of Human Ecology, the UW–Madison Graduate School and the Wisconsin Institute for Discovery. We would specifically like to thank Vito Freese for his assistance with installation and Patricia Brennan, Kendra Kreutz, Andrew Wagner, John Hilgers, and Roberto Rengel for their support and assistance in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Ponto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponto, K., Kohlmann, J. & Tredinnick, R. DSCVR: designing a commodity hybrid virtual reality system. Virtual Reality 19, 57–70 (2015). https://doi.org/10.1007/s10055-014-0254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-014-0254-0

Keywords

Navigation