Skip to main content

Advertisement

Log in

Chemical and mineralogical transformations in three tropical soils due to permeation with acid mine drainage

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The chemical and mineralogical compositions of three tropical soils, before and after permeation with 19–24 pore volumes of acid mine drainage (AMD), were assessed using X-ray diffraction and chemical analyses, in order to consider their potential value as clay liners. After permeation the CEC of one soil (Soil K) was reduced, partly due to structural modification of smectite by AMD. Conversely, the other soils (Soils A and H) showed increased CEC values due to structural changes in mixed layer vermiculite minerals, resulting in the formation of vermiculite as a separate phase in the soils. The specific surfaces of the soils were reduced. AMD caused changes in the variable charge properties of the soils due to the composite effects of soil pH and organic matter reduction and the changes in composition of exchangeable ions. Dolomite, gibbsite, diaspore, magnesioferrite and hydroxy apatite were dissolved from the soils. Chlorite was mildly altered but kaolinite was structurally resistant to AMD attack. Jarosites were, however, formed in all the soils. It was concluded that the tropical soils studied could be effective sinks for zinc and nickel from AMD, but that Soils A and H would be the most desirable clay liners for acid mine waste containment due to their low hydraulic conductivity, high sorptive capacity and compatibility with AMD.

Résumé

Les compositions chimiques et minéralogiques de trois sols tropicaux, avant et après percolation en essai de drainage acide minier (AMD), ont été étudiées à partir d’essais de diffractométrie RX et d¹analyses chimiques, afin de préciser leur utilisation possible comme revêtement argileux. Après percolation, la CEC de l’un des sols a diminué, en partie du fait de modifications structurales d’une smectite par le drainage acide. A l’inverse, la CEC des autres sols a augmenté du fait de changement de structure de minéraux argileux interstratifiés à base de vermiculite, correspondant à la formation de vermiculite dans ces sols. Les surfaces spécifiques de ces sols ont diminué. Le drainage acide a causé des modifications du complexe d’adsorption de ces sols du fait des effets combinés du pH du sol, de la matière organique et des ions échangeables. De la dolomite, de la gibbsite, du diaspore, de la magnésioferrite et de l’hydroxy apatite ont été dissous dans ces sols. La chlorite a été légèrement altérée mais la kaolinite a résisté aux attaques acides, de par sa structure. De la jarosite s’est cependant formée dans tous ces sols. On a conclu que les sols tropicaux étudiés pouvaient constituer des puits pour le zinc et le nickel après attaque acide. Les sols A et H seraient les plus adaptés comme recouvrement argileux pour des digues de confinement de déchets issus de drainage acide, du fait de leur faible conductivité hydraulique, de leur forte capacité d’adsorption et de leur compatibilité avec le drainage acide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahn PM (1970) West African soils, 3rd edn. Oxford University, University Press, London, 332pp

  • Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems—version 3.0 user’s manual: U.S. Environmental Protection Agency Report EPA/600/3-91/021106 p

  • American Society for Testing and Materials (2002) Annual book of ASTM standards. Section 4 Construction—volume 04.08 soil and rock (I): D 420-D 5779. ASTM International, West Conshohocken, PA, 1672pp

  • Bloom PR, Erich MS (1987) Effect of solution composition on the rate and mechanism of gibbsite dissolution in acid solutions. Soil Sci Soc Am J 51:1131–1136

    Article  Google Scholar 

  • Brammer H (1962) Ghana soils. In: Wills JB (ed) Agriculture and land use in Ghana. Oxford University Press, London, pp 88–126

  • Brindley GW, Brown G (1989) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph No. 5, Mineralogical Society, London

  • Brown G (1961) The X-ray identification and crystal structures of clay minerals. Mineralogical Society, London

    Google Scholar 

  • Brown G, Brindley GW (1989) X-ray diffraction procedures for clay identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 305–359

    Google Scholar 

  • Building and Road Research Institute and Lyon Associates Inc. (1971) Laterites and lateritic soils and other problem soils of Africa. An engineering study for USAID, AID/csd-2164

  • Carnicelli S, Mirabella A, Cecchini G, Sanesi G (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the Apennine Mountains, Italy. Clays Clay Minerals 45(1):28–41

    Article  Google Scholar 

  • Caroll D (1974) Clay minerals: a guide to their X-ray identification. The Geological Society of America, Special paper, p 126

  • Chao TT, Zhou L (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Am J Soil Sci Soc 47:225–232

    Article  Google Scholar 

  • Dixon JB, Weed CB (1977) Minerals in soil environments. Soil Science Society of America, Madison

    Google Scholar 

  • Dremanis A (1962) Quantitative gasometric determination of calcite and dolomite by using Chittick Apparatus. J Sediment Petrol 32(3):520–529

    Google Scholar 

  • Drouet C, Pass KL, Baron D, Draucker S, Navrotsky A. (2004) Thermochemistry of jarosite–alunite and natrojarosite–natroalunite solid solutions. Geochemica Cosmochimica Acta 68(10):2197–2205

    Article  Google Scholar 

  • Frempong EM, Yanful EK (2004) The effectiveness of some tropical soil liners in the retention of heavy metals released from ARD. In: Proceedings of 57th Canadian geotechnical conference, Quebec City, Canada (Oct. 24–27, 2004), Session 7D, pp 1–8

  • Goodyear J, Duffin WJ (1954) Identification of plagioclase feldspars by the X-ray powder methods. Mineral Mag 30:306–326

    Article  Google Scholar 

  • Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30 (1/2):358–361

    Google Scholar 

  • Grim RE (1968) Clay mineralogy. McGraw Hill, New York

    Google Scholar 

  • Hamer R, Graham RC, Amrhein C, Bozhiloc KN (2003) Dissolution of rippidolite (Mg, Fe-chlorite) in organic and inorganic solutions. Soil Sci Soc Am J 67:654–661

    Article  Google Scholar 

  • Hartemink AE (2004) Soils of the tropics. Geoderma 123:373–375

    Article  Google Scholar 

  • Hughes RE, Moore DM, Glass HD (1994) Qualiltative and quantitative analysis of clay mineral in soils. In: Amonette JE, Zelazny LW (eds) Quantitative methods in soil mineralogy. Soil Science Society of America (SSSA) Miscellaneous Publication. SSSA Inc., Madison, pp 330–359

    Google Scholar 

  • Iwata S (1995) Interaction between particles through water. In: Iwate S, Tabuchi T, Warkentin BP (eds) Soil–water interactions: mechanisms and applications. Marcel Dekker Inc., New York, pp 154–228

    Google Scholar 

  • Kahle M, Kleber M, Jahn R (2002) Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma 109:191–205

    Article  Google Scholar 

  • Kalinowski BE, Schweda P (1996) Kinetics of muskovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim Cosmochim Acta 60:367–385

    Article  Google Scholar 

  • Kashir M, Yanful EK (1997). A flow pump system for assessing clay barrier-permeant compatibility. Geotech Test J 20(2):179–190

    Article  Google Scholar 

  • Kashir M, Yanful EK (2000) Compatibility of slurry wall backfill soils with acid mine drainage. Adv Environ Res 4(3):251–268

    Article  Google Scholar 

  • Kashir M, Yanful EK (2001) Hydraulic conductivity of bentonite permeated with acid mine drainage. Can Geotech J 32(5):1034–1048

    Article  Google Scholar 

  • MacEwan DM (1950) Some notes on the recording and interpretation of X-ray diagrams of clay soils. J Soil Sci 1:90–103

    Article  Google Scholar 

  • Manzano M, Ayora C, Domenech C, Navarette P, Garralon A, Turrero M-J (1999) The impact of the Aznalcollar mine-tailing spill on groundwater. Sci Total Environ 242(1–3):189–209

    Article  Google Scholar 

  • Martin RT (1955) Glycol retention analysis. Proc Soil Sci Soc Am 19(2):160–164

    Article  Google Scholar 

  • Mendoça RGM, Barbosa MC Castro FJCO (2002) Evaluation of ions retention capacity of a residual soil of Rio de Janeiro, Brazil. In: De Mello G, Almeida M (eds) Proceedings of 4th international congress on environmental geotechnics, Rio de Janeiro, Brazil 1:439–446

  • Mitchell JK (1993) Fundamentals of soil behaviour, 2nd edn. Wiley, New York

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of minerals. Oxford University Press Inc., New York

    Google Scholar 

  • Murray HH (1951) The structure of kaolinite and its relation to acid treatment. PhD Thesis, University of Illinois

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the subsequent formation of secondary iron minerals. In: Kittrick JA, Fanning, DS, Hossner LR (eds) Acid sulfate weathering. Soil Science Society of America, Madison, Special Publication, #10, pp 37–56

  • Omidi GH, Thomas JC, Brown KW (1995) Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water Air Soil Pollut 89:91–10

    Article  Google Scholar 

  • Perrin RMS (1971) The clay mineralogy of British sediments. Mineralogical Society, London

    Google Scholar 

  • Rich CI (1968) Hydroxy interlayers in expansible layer silicates. Clays Clay Miner 16:15–30

    Article  Google Scholar 

  • Ridley MK, Wesolowski DJ, Palmer DA, Benezeth P, Kettler RM (1997) Effect of sulphate on the release rate of Al3+ from gibbsite in low-temperature acidic waters. Environ Sci Technol 31:1922–1925

    Article  Google Scholar 

  • Ross GJ (1968) Structural decomposition of orthochlorite during its acid dissolution. Can Mineral 9:522–530

    Google Scholar 

  • Ross GJ (1969) Acid dissolution of chlorites: release of magnesium, iron and aluminium and mode of attack. Clays Clay Minerals 17:347–354

    Article  Google Scholar 

  • Ross GJ, Wang C (1993) Extractable Al, Fe, Mn, and Si. In: Carter MR (eds) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers

  • Ross GJ, Wang C, Schuppli PA (1985) Hydroxylamine and ammonium oxalate solutions as extractants for Fe and Al from soil. Am J Soil Sci Soc 49:783–785

    Article  Google Scholar 

  • Sawhney BJ (1977) Interstratification in layer silicates. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 405–434

    Google Scholar 

  • Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 145–172

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Šucha V, Środoń J, Clauer N, Elsass F, Elberl DD, Kraus I, Madejová J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clays Clay Minerals 36:403–419

    Google Scholar 

  • Suraj G, Iyer CSP, Lalithambika M (1998) Adsorption of cadmium and copper by modified kaolinites. Appl Clay Sci 13:293–306

    Article  Google Scholar 

  • United States Department of Agriculture (1996) Soil survey laboratory methods manual. Soil survey investigations Report No. 42 Version 3.0. National Soil Survey Center, Natural Resources Conservation Service, USDA, January 1996

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Wang C, Schuppli PA, Ross GJ (1987) A comparison of hydroxylamine and ammonium oxalate solutions as extractants for Al, Fe and Si from Spodosols and Spodosol-like soils in Canada. Geoderma 40:345–355

    Article  Google Scholar 

  • Welch SA, Ullman WJ (1996) Feldspar dissolution in acidic and organic solutions: compositional and pH dependence of dissolution rate. Geochimica Cosmochimica Acta 60 (16):2939–2948

    Article  Google Scholar 

  • Yanful EK, Shikatani KS, Quirt DH (1995) Hydraulic conductivity of natural soils permeated with acid mine drainage. Can Geotechn J 32:624–646

    Article  Google Scholar 

  • Young A (1976) Tropical soils and soil surveys. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgements

This work was made possible through scholarships given to E. M. Frempong by the Canadian Commonwealth Scholarship and Fellowship Program and the Council for Scientific and Industrial Research, Ghana and Discovery Grant awarded to E. K. Yanful by the Natural Sciences and Engineering Research Council, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest K. Yanful.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frempong, E.M., Yanful, E.K. Chemical and mineralogical transformations in three tropical soils due to permeation with acid mine drainage. Bull Eng Geol Environ 65, 253–271 (2006). https://doi.org/10.1007/s10064-005-0029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-005-0029-7

Keywords

Mots clés

Navigation