Skip to main content
Log in

Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Recently developed region-specific GMPEs are used for a comprehensive seismic hazard analysis (SHA) of the North and Central Himalayas (NCH) using a probabilistic approach considering two source models. Vulnerable seismic sources in the areas are identified based on the Seismotectonic Atlas (Dasgupta et al. 2000), published by the Geological Survey of India. An up to date, homogenized and declustered earthquake catalogue is compiled from various sources, with earthquake data since 250 BC, to create a new digitized seismotectonic representation of the region. Regional seismic zones having similar seismicity are recognized based on the Gutenberg-Richter (GR) parameters and the region is delineated into 5 seismic zones. The study area is divided into grids of size 0.05° × 0.05° and the hazard in terms of Peak Ground Acceleration (PGA) at the centre of each grid point is estimated and presented as hazard maps for individual seismic sources, maximum of all sources, and average of both sources. From the current study, it could be concluded that the PGA estimated in the regions is comparatively higher than what is reported in the codal provisions for seismic zonation and estimation of design horizontal acceleration for the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abrahamson NA, Litehiser JJ (1989) Attenuation of vertical peak acceleration. Bull Seismol Soc Am 79(3):549–580

    Google Scholar 

  • Abrahamson N, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24(1):67–97. https://doi.org/10.1193/1.2924360

    Article  Google Scholar 

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover Publications Inc., New York

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA PGV and spectral accelerations in Europe the Mediterranean region and the Middle East. Seismol Res Lett 81(2):195–206. https://doi.org/10.1785/gssrl.81.2.195

    Article  Google Scholar 

  • Anagnos T, Kiremidjian AS (1988) A review of earthquake occurrence models for seismic hazard analysis. Probabilistic Eng Mech 3(1):3–11

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Patel S (2015) Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Nat Hazards 78(2):1163–1195

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Dutta N, Moustafa SS, Al-Arifi NS (2017) Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city. J Earth Syst Sci 126(1):12

    Article  Google Scholar 

  • Anbazhagan P, Kumar A, Sitharam TG (2013) Ground motion prediction equation considering combined dataset of recorded and simulated ground motions. Soil Dyn Earthq Eng 53:92–108. https://doi.org/10.1016/j.soildyn.2013.06.003

    Article  Google Scholar 

  • Anbazhagan P, Vinod JS, Sitharam TG (2009) Probabilistic seismic hazard analysis for Bangalore. Nat Hazards 48(2):145–166

    Article  Google Scholar 

  • Anderson JG, Wesnousky SG, Stirling MW (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86(3):683–690

    Google Scholar 

  • Bai L, Li G, Khan NG, Zhao J, Ding L (2017) Focal depths and mechanisms of shallow earthquakes in the Himalayan-Tibetan region. Gondwana Res 41:390–399

    Article  Google Scholar 

  • Baro O, Kumar A, Ismail-Zadeh A (2018) Seismic hazard assessment of the Shillong Plateau India. Geomatics Nat Hazards Risk 9(1):841–861

    Article  Google Scholar 

  • Beauval C, Yepes H, Palacios P, Segovia M, Alvarado A, Font Y, Aguilar J, Troncoso L, Vaca S (2013) An earthquake catalog for seismic hazard assessment in Ecuador. Bull Seismol Soc Am 103(2A):773–786

    Article  Google Scholar 

  • Bhatia SC, Kumar MR, Gupta HK (1999) A probabilistic seismic hazard map of India and adjoining regions. Ann Geofis 42(6):1153–1164

    Google Scholar 

  • Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc London Spec Publ 483(1):423–482

    Article  Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan seismic hazard. Science 293(5534):1442–1444

    Article  Google Scholar 

  • BIS 1893 (2016) Criteria for Earthquake Resistant Design of Structures. Bureau of Indian Standards, New Delhi

  • Bollinger L, Tapponnier P, Sapkota SN, Klinger Y (2016) Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68(1):12. https://doi.org/10.1186/s40623-016-0389-1

    Article  Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA PGV and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24(1):99–138. https://doi.org/10.1193/1.2830434

  • Budnitz RJ, Apostolakis G, Boore DM (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts (No. NUREG/CR-6372-Vol. 1; UCRL-ID-122160). Nuclear Regulatory Commission, Washington

  • Burnwal ML, Burman A, Samui P, Maity D (2017) Deterministic strong ground motion study for the Sitamarhi area near Bihar–Nepal region. Nat Hazards 87(1):237–254

  • Campbell KW, Bozorgnia Y (2003) Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bull Seismol Soc Am 93(1):314–331

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA PGV PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24(1):139–171. https://doi.org/10.1193/1.2857546

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA PGV and 5% damped linear acceleration response spectra. Earthq Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF Jr, Kayen RE, Moss RE (2004) Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng 130(12):1314–1340

    Article  Google Scholar 

  • Chernick MR (2011) Bootstrap methods: A guide for practitioners and researchers. John Wiley & Sons, New Jersey

    Google Scholar 

  • Chiou BSJ (2006) Chiou and Youngs PEER-NGA empirical ground motion model for the average horizontal component of peak acceleration and pseudo-spectral acceleration for spectral periods of 0.01 to 10 seconds. PEER Report Draft 219

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Article  Google Scholar 

  • Cornell CA, Winterstein SR (1986) Applicability of the Poisson Earthquake Occurrence Model Seismic Hazard Methodology for the Central and Eastern United States. EPRI Res Rep 1986:101

    Google Scholar 

  • Cramer CH (2001) A seismic hazard uncertainty analysis for the New Madrid seismic zone. Eng Geol 62(1–3):251–266

    Article  Google Scholar 

  • Das R, Sharma ML, Wason HR (2016) Probabilistic seismic hazard assessment for northeast India region. Pure Appl Geophys 173(8):2653–2670

    Article  Google Scholar 

  • Devaraj D, Ramkrishnan R, Prabu T, Kolathayar S, Sitharam TG (2020) Synthesis of Linear JTFA-Based Response Spectra for Structural Response and Seismic Reduction Measures for North-East India. J Earthq Tsunami 14(06):2050023

    Article  Google Scholar 

  • Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75(14):2625–2647. https://doi.org/10.1029/jb075i014p02625

    Article  Google Scholar 

  • Duvall MJ, Waldron JW, Godin L, Najman Y (2020) Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin. Proc Natl Acad Sci 117(30):17615–17621

    Article  Google Scholar 

  • Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66(4):8–21

    Article  Google Scholar 

  • Galanis OC, Tapanos TM, Papadopoulos GA, Kiratzi AA (2002) Bayesian extreme values distribution for seismicity parameters assessment in South America. J Balkan Geophys Soc 5(3):77–86

    Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California with aftershocks removed Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Article  Google Scholar 

  • Dasgupta S, Narula PL, Acharyya SK, Banerjee J (2000) Seismotectonic atlas of India and its environs. Geological Survey of India, Kolkata

  • Grandori G, Guagenti E, Petrini V (1984) On the use of renewal processes in seismic hazard analysis. Proc 8th World Conf Earthq Eng 1:287–294

  • Guagenti EG, Molina C (1986) Semi-Markov processes in seismic risk analysis. Semi-Markov Models. Springer, Boston, pp 487–503

    Chapter  Google Scholar 

  • Gupta HK, Gahalaut VK (2015) Can an earthquake of Mw∼ 9 occur in the Himalayan region? Geol Soc London Spec Publ 412(1):43–53

    Article  Google Scholar 

  • Gupta ID (2006) Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dyn Earthq Eng 26(8):766–790

    Article  Google Scholar 

  • Gupta ID (2010) Response spectral attenuation relations for in-slab earthquakes in Indo-Burmese subduction zone. Soil Dyn Earthq Eng 30(5):368–377

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1956) Earthquake magnitude intensity energy and acceleration: (Second paper). Bull Seismol Soc Am 46(2):105–145

    Article  Google Scholar 

  • Hamilton WC (1964) Statistics in Physical Sciences. The Ronald Press Co, New York, p 230

    Google Scholar 

  • Hasegawa HS, Basham PW, Berry MJ (1981) Attenuation relations for strong seismic ground motion in Canada. Bull Seismol Soc Am 71(6):1943–1962

    Article  Google Scholar 

  • Huang H, Ramkrishnan R, Kolathayar S, Garg A, Yadav JS (2021) Development of Region-Specific New Generation Attenuation Relations for North India Using Artificial Neural Networks. In: Proceedings of the 1st Indo-China Research Series in Geotechnical and Geoenvironmental Engineering. Springer, Singapore, p 85–101

  • Iyengar RN, Ghosh S (2004) Microzonation of earthquake hazard in greater Delhi area. Curr Sci 87(9):1193–1202

    Google Scholar 

  • Iyengar RN, Sharma D, Siddiqui JM (1999) Earthquake history of India in medieval times. Indian J Hist Sci 34:181–238

    Google Scholar 

  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep 7(1):1–16. https://doi.org/10.1038/s41598-017-11697-w

    Article  Google Scholar 

  • Jaiswal K, Sinha R (2007) Probabilistic seismic-hazard estimation for peninsular India. Bull Seismol Soc Am 97(1B):318–330

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley California earthquake. Bull Seismol Soc Am 71(6):2011–2038

    Article  Google Scholar 

  • Kagan YY, Knopoff L (1985) The two-point correlation function of the seismic moment tensor. Geophys J Int 83(3):637–656

    Article  Google Scholar 

  • Kalkan E, Gülkan P, Yilmaz N, Çelebi M (2009) Reassessment of probabilistic seismic hazard in the Marmara region. Bull Seismol Soc Am 99(4):2127–2146

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82(20):2981–2987

    Article  Google Scholar 

  • Kanno T, Narita A, Morikawa N, Fujiwara H, Fukushima Y (2006) A new attenuation relation for strong ground motion in Japan based on recorded data. Bull Seismol Soc Am 96(3):879–897. https://doi.org/10.1785/0120050138

    Article  Google Scholar 

  • Kanth SR, Iyengar RN (2006) Seismic hazard estimation for Mumbai city. Curr Sci 9:1486–1494

    Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics 138(1):79–92

    Article  Google Scholar 

  • Khattri KN, Rogers AM, Perkins DM, Algermissen ST (1984) A seismic hazard map of India and adjacent areas. Tectonophysics 108(1–2):93–134

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude m max. Pure Appl Geophys 161(8):1655–1681

    Article  Google Scholar 

  • Kiureghian AD, Ang AH (1977) A fault-rupture model for seismic risk analysis. Bull Seismol Soc Am 67(4):1173–1194

    Google Scholar 

  • Kolathayar S (2012) Comprehensive Seismic Hazard Analysis of India (Doctoral dissertation). Indian Institute of Science, Bangalore

  • Kolathayar S, Sitharam TG (2012) Characterization of regional seismic source zones in and around India. Seismol Res Lett 83(1):77–85

    Article  Google Scholar 

  • Kolathayar S, Sitharam TG (2018) Earthquake Hazard Assessment: India and Adjacent Regions. CRC Press, Florida

    Book  Google Scholar 

  • Kolathayar S, Sitharam TG, Vipin KS (2012) Deterministic seismic hazard macrozonation of India. J Earth Syst Sci 121(5):1351–1364. https://doi.org/10.1007/s12040-012-0227-1

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Pearson Education India

  • Kumar A, Anbazhagan P, Sitharam TG (2013) Seismic hazard analysis of Lucknow considering local and active seismic gaps. Nat Hazards 69(1):327–350

    Article  Google Scholar 

  • Lomnitz-Adler J (1983) A statistical model of the earthquake process. Bull Seismol Soc Am 73(3):853–862

    Article  Google Scholar 

  • Mahajan AK, Thakur VC, Sharma ML, Chauhan M (2010) Probabilistic seismic hazard map of NW Himalaya and its adjoining area India. Nat Hazards 53(3):443–457

    Article  Google Scholar 

  • McGuire RK, Arabasz WJ (1990) An introduction to probabilistic seismic hazard analysis. Geotech Environ Geophys 1:333–353

    Article  Google Scholar 

  • Menon A, Ornthammarath T, Corigliano M, Lai CG (2010) Probabilistic seismic hazard macrozonation of Tamil Nadu in Southern India. Bull Seismol Soc Am 100(3):1320–1341

    Article  Google Scholar 

  • Mohanty WK, Walling MY (2008) Seismic hazard in mega city Kolkata India. Nat Hazards 47(1):39–54

    Article  Google Scholar 

  • Mohanty WK, Walling MY, Nath SK, Pal I (2007) First order seismic microzonation of Delhi India using geographic information system (GIS). Nat Hazards 40(2):245–260

    Article  Google Scholar 

  • Mukhopadhyay S, Pandey Y, Dharmaraju R, Chauhan PKS, Singh P, Dev A (2002) Seismic microzonation of Delhi for ground-shaking site effects. Curr Sci 877–881

  • Mulargia F, Stark PB, Geller RJ (2017) Why is probabilistic seismic hazard analysis (PSHA) still used? Phys Earth Planet Inter 264:63–75

    Article  Google Scholar 

  • Nath SK, Thingbaijam KKS (2012) Probabilistic seismic hazard assessment of India. Seismol Res Lett 83(1):135–149

    Article  Google Scholar 

  • Nath SK, Adhikari MD, Maiti SK, Devaraj N, Srivastava N, Mohapatra LD (2014) Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata India. Nat Hazards Earth Syst Sci 14(9):2549

    Article  Google Scholar 

  • Nath SK, Raj A, Thingbaijam KKS, Kumar A (2009) Ground motion synthesis and seismic scenario in Guwahati city—a stochastic approach. Seismol Res Lett 80(2):233–242. https://doi.org/10.1785/gssrl.80.2.233

    Article  Google Scholar 

  • Nath SK, Vyas M, Pal I, Sengupta P (2005) A seismic hazard scenario in the Sikkim Himalaya from seismotectonics spectral amplification source parameterization and spectral attenuation laws using strong motion seismometry. J Geophys Res Solid Earth 110(B1)

  • NDMA (2010) Development of probabilistic seismic hazard map of India, Technical report by National Disaster Management Authority, Govt. of India. www.ndma.gov.in/images/pdf/Indiapshafinalreport.pdf

  • Parvez IA (2007) On the Bayesian analysis of the earthquake hazard in the North-East Indian peninsula. Nat Hazards 40(2):397–412

    Article  Google Scholar 

  • Parvez IA, Vaccari F, Panza GF (2003) A deterministic seismic hazard map of India and adjacent areas. Geophys J Int 155(2):489–508

    Article  Google Scholar 

  • Peng KZ, Wu FT, Song L (1985) Attenuation characteristics of peak horizontal acceleration in Northeast and Southwest China. Earthq Eng Struct Dyn 13(3):337–350

    Article  Google Scholar 

  • Rajendran K, Parameswaran RM, Rajendran CP (2017) Seismotectonic perspectives on the Himalayan arc and contiguous areas: inferences from past and recent earthquakes. Earth-Sci Rev 173:1–30

    Article  Google Scholar 

  • Ramkrishnan R, Kolathayar S, Sitharam TG (2019) Seismic hazard assessment and land use analysis of Mangalore City Karnataka India. J Earthq Eng 1–22

  • Ramkrishnan R, Sreevalsa K, Sitharam TG (2018) New Attenuation Relations for North East Himalayas. 16th Symposium on Earthquake Engineering. IIT Roorkee, India, pp 1–10

    Google Scholar 

  • Ramkrishnan R, Sreevalsa K, Sitharam TG (2021) Development of New Ground Motion Prediction Equation for the North and Central Himalayas Using Recorded Strong Motion Data. J Earthq Eng 25(10):1903–1926

    Article  Google Scholar 

  • Ramkrishnan R, Sreevalsa K, Sitharam TG (2020) Strong motion data based regional ground motion prediction equations for north east india based on non-linear regression models. J Earthq Eng 1–21

  • Rao KS, Neelima Satyam D (2005) Seismic microzonation studies for Delhi region. In: Symposium on Seismic Hazard Analysis and Microzonation, 2324

  • Reasenberg P (1985) Second-order moment of central California seismicity 1969–1982. J Geophys Res Solid Earth 90(B7):5479–5495

    Article  Google Scholar 

  • Rout MM, Das J, Das R (2015) Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region. J Earth Syst Sci 124(3):577–586

    Article  Google Scholar 

  • Sharma ML (1998) Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India. Bull Seismol Soc Am 88(4):1063–1069

    Article  Google Scholar 

  • Sharma ML, Bungum H (2006) New strong ground-motion spectral acceleration relations for the Himalayan region. In: Proceedings of the First European Conference on Earthquake Engineering and Seismology (ECEES), 8

  • Sharma ML, Douglas J, Bungum H, Kotadia J (2009) Ground-motion prediction equations based on data from the Himalayan and Zagros regions. J Earthq Eng 13(8):1191–1210. https://doi.org/10.1080/13632460902859151

    Article  Google Scholar 

  • Sharma ML, Wason HR, Dimri R (2003) Seismic zonation of the Delhi region for bedrock ground motion. Pure Appl Geophys 160(12):2381–2398

    Article  Google Scholar 

  • Sil A, Sitharam TG, Kolathayar S (2013) Probabilistic seismic hazard analysis of Tripura and Mizoram states. Nat Hazards 68(2):1089–1108. https://doi.org/10.1007/s11069-013-0678-y

    Article  Google Scholar 

  • Singh RP, Aman A, Prasad YJJ (1996) Attenuation relations for strong seismic ground motion in the Himalayan region. Pure Appl Geophys 147(1):161–180. https://doi.org/10.1007/bf00876442

    Article  Google Scholar 

  • Sitharam TG, Anbazhagan P (2007) Seismic hazard analysis for the Bangalore region. Nat Hazards 40(2):261–278

    Article  Google Scholar 

  • Sitharam TG, Kolathayar S (2013) Seismic hazard analysis of India using areal sources. J Asian Earth Sci 62:647–653. https://doi.org/10.1016/j.jseaes.2012.11.013

    Article  Google Scholar 

  • Sitharam TG, Kolathayar S, James N (2015) Probabilistic assessment of surface level seismic hazard in India using topographic gradient as a proxy for site condition. Geosci Front 6(6):847–859

    Article  Google Scholar 

  • Sokolov V, Ismail-Zadeh A (2015) Seismic hazard from instrumentally recorded historical and simulated earthquakes: application to the Tibet-Himalayan region. Tectonophysics 657:187–204

    Article  Google Scholar 

  • Stein RS, Hanks TC (1998) M≧ 6 earthquakes in southern California during the twentieth century: No evidence for a seismicity or moment deficit. Bull Seismol Soc Am 88(3):635–652

    Article  Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proc. of the 1st Int. Conf. on Microzonazion, Seattle, 2:897–910

  • Tahernia N, Khodabin M, Mirzaei N (2014) Non-Poisson probabilistic seismic hazard assessment. Arab J Geosci 7(8):3259–3269

    Article  Google Scholar 

  • Tandon AN (1956) Zones of India liable to earthquake damage. Ind J Meteorol Geophys 10:137–146

    Google Scholar 

  • Uhrhammer RA (1986) Characteristics of northern and central California seismicity. Earthq Notes 57(1):21

    Google Scholar 

  • US NRC United States Nuclear Regulatory Commission (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. No. NUREG/CR--6372-VOL. 2. Nuclear Regulatory Commission

  • Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. In: Seismicity Patterns, their Statistical Significance and Physical Meaning, Birkhäuser, Basel, pp 509–535

  • Vere-Jones D, Ozaki T (1982) Some examples of statistical estimation applied to earthquake data. Ann Inst Stat Math 34(1):189–207

    Article  Google Scholar 

  • Vipin KS (2013) Assessment Of Seismic Hazard With Local Site Effects: Deterministic And Probabilistic Approaches. Indian Institute of Science, Bangalore, Karnataka, India (Doctoral dissertation)

    Google Scholar 

  • Vipin KS, Sitharam TG (2011) Multiple source and attenuation relationships for evaluation of deterministic seismic hazard: Logic tree approach considering local site effects. Georisk Assess Manag Risk Eng Syst Geohazards 5(3–4):173–185. https://doi.org/10.1080/17499518.2010.532015

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Elsevier, Amsterdam

    Book  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Fukushima Y et al (2006) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96(3):898–913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramkrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramkrishnan, R., Kolathayar, S. & Sitharam, T.G. Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations. Bull Eng Geol Environ 80, 8137–8157 (2021). https://doi.org/10.1007/s10064-021-02434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02434-9

Keywords

Navigation