Skip to main content
Log in

In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Five strains of lactic acid bacteria were tested for their ability to remove deoxynivalenol (DON) and T-2 toxin from MRS broth. The ability of Lactobacillus plantarum strain 102 (LP102) was the strongest among 5 strains after incubation at 37°C for 72 h. The mode of removal was physical binding, rather than biotransformation. The abilities were not significantly different between when removing single toxin and when removing mixed toxins by viable cells of LP102. DON and T-2 toxin released from LP102 viable cell-toxin complexes were 28.22±1.55 and 35.42±2.02% of total bound toxins respectively after 3 times of wash with posphate buffered saline, respectively, those were 4.59±0.86 and 5.59±1.47% after incubation with simulated gastric fluid (SGF) at 37oC for 4 h, and 6.86±0.81 and 9.04±1.13% after incubation with simulated intestinal fluid (SIF) at 37oC for 4 h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He J, Zhou T, Young JC, Boland GJ, Scott PM. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: A review. Trends Food Sci. Tech. 21: 67–76 (2010)

    Article  CAS  Google Scholar 

  2. Krska R, Welzig E, Boudra H. Analysis of Fusarium toxins in feed. Anim. Feed Sci. Tech. 137: 241–264 (2007)

    Article  CAS  Google Scholar 

  3. Desjardins AE. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. APS Press, St. Paul, MN, USA. p. 260 (2006)

    Google Scholar 

  4. Eriksen GS, Pettersson H, Lundh T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives, and de-epoxy metabolites. Food Chem. Toxicol. 42: 619–624 (2004)

    Article  Google Scholar 

  5. Morgavi DP, Riley RT. Fusarium and their toxins: Mycology, occurrence, toxicity, control, and economic impact. Anim. Feed Sci. Tech. 137: 199–200 (2007)

    Article  Google Scholar 

  6. Pestka J, Smolinski A. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Env. Heal. B 8: 39–69 (2005)

    Article  CAS  Google Scholar 

  7. Binder EM, Tan LM, Chin LJ, Handl J, Richard J. Worldwide occurrence of mycotoxins in commodities, feeds, and feed ingredients. Anim. Feed Sci. Tech. 137: 265–282 (2007)

    Article  CAS  Google Scholar 

  8. Chun HS, Chung DH, Lee SR. Detection of T-2 toxin in Korean grains by ELISA. Food Sci. Biotechnol. 4: 66–69 (1995)

    Google Scholar 

  9. Pei SC, Lee WJ, Kim SS. Reduction of deoxynivalenol in barley by chemical treatments and malting. Food Sci. Biotechnol. 14: 823–827 (2005)

    CAS  Google Scholar 

  10. Zhou T, He J, Gong J. Microbial transformation of trichothecene mycotoxins. World Mycotoxin J. 1: 23–30 (2008)

    Article  CAS  Google Scholar 

  11. Kaur S, Das M. Functional foods: An overview. Food Sci. Biotechnol. 20: 861–875 (2011)

    Article  Google Scholar 

  12. Shetty PH, Jespersen L. Saccharomy cescerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Tech. 17: 48–55 (2006)

    Article  CAS  Google Scholar 

  13. Kankaanpää P, Tuomola E, El-Nezami HS, Ahokas J, Salminen SJ. Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model. J. Food Protect. 63: 412–414 (2000)

    Google Scholar 

  14. Gratz S, Mykkänen H, Ouwehand AC, Juvonen R, Salminen S, El-Nezami HS. Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Appl. Environ. Microb. 70: 6306–6308 (2004)

    Article  CAS  Google Scholar 

  15. Shah N, Wu X. Aflatoxin B1 binding abilities of probiotic bacteria. Biosci. Microflora 18: 43–48 (1999)

    CAS  Google Scholar 

  16. El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas J. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J. Food Protect. 61: 466–468 (1998)

    CAS  Google Scholar 

  17. El-Nezami HS, Polychronaki N, Salminen S, Mykkänen H. Binding rather than metabolism may explain the interaction of two foodgrade Lactobacillus strains with zearalenone and its derivative α-zearalenol. Appl. Environ. Microb. 68: 3545–3549 (2002)

    Article  CAS  Google Scholar 

  18. Niderkorn V, Boudra H, Morgavi DP. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol. 101: 849–856 (2006)

    Article  CAS  Google Scholar 

  19. Lu Q, Liang X, Chen F. Detoxification of Zearalenone by viable and inactivated cells of Planococcus sp. Food Control 22: 191–195 (2011)

    Article  CAS  Google Scholar 

  20. Cheng B, Wan C, Yang S, Xu H, Wei H, Liu J, Tian W, Zeng M. Detoxification of deoxynivalenol by Bacillus strains. J. Food Safety 30: 599–614 (2010)

    CAS  Google Scholar 

  21. El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 36: 321–326 (1998)

    Article  CAS  Google Scholar 

  22. Topcu A, Bulat T, Wishah R, Boyacý IH. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 139: 202–205 (2010)

    Article  CAS  Google Scholar 

  23. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microb. 67: 3086–3091 (2001)

    Article  CAS  Google Scholar 

  24. Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol. 47: 1064–1068 (2009)

    Article  CAS  Google Scholar 

  25. Kovacs-Nolan J, Mine Y. Microencapsulation for the gastric passage and controlled intestinal release of immunoglobulin Y. J. Immunol. Methods 296: 199–209 (2005)

    Article  CAS  Google Scholar 

  26. Zou Z, He Z, Li H, Han P, Tang J, Xi C, Li Y, Zhang L, Li X. Development and application of a method for the analysis of two trichothecenes: Deoxynivalenol and T-2 toxin in meat in China by HPLC-MS/MS. Meat Sci. 90: 613–617 (2012)

    Article  CAS  Google Scholar 

  27. El-Nezami HS, Chrevatidis A, Auriola S, Salminen S, Mykkänen H. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 19: 680–686 (2002)

    Article  CAS  Google Scholar 

  28. Fazeli MR, Hajimohammadali M, Moshkani A, Samadi N, Jamalifar H, Khoshayand MR, Vaghari E, Pouragahi S. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food Protect. 72: 189–192 (2009)

    CAS  Google Scholar 

  29. Niderkorn V, Morgavi DP, Aboab B, Lemaire M, Boudra H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J. Appl. Microbiol. 106: 977–985 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, ZY., He, ZF., Li, HJ. et al. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Sci Biotechnol 21, 1677–1683 (2012). https://doi.org/10.1007/s10068-012-0223-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0223-x

Keywords

Navigation