Skip to main content
Log in

Utilization of whey powder as an alternate carbon source for production of hypocholesterolemic drug by Aspergillus terreus MTCC 1281

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this present study, we investigated the utilization of whey powder as an alternate carbon source and statistical optimization of medium components on lovastatin production by Aspergillus terreus MTCC 1281. Central composite design (CCD) of response surface methodology (RSM) was successfully employed to optimize the four medium variables whey powder, yeast extract, sodium chloride, and copper sulphate at five levels. Regression analysis explained that the linear and square effects of the variables were found significant with R 2 value of 0.937. Maximum lovastatin production of 358.2 mg/L was obtained with the predicted optimal concentration of whey powder 1.5%, yeast extract 0.75%, sodium chloride 0.04%, and copper sulphate 0.019%.The results of this study indicated that statistical optimization approach leads to high lovastatin production by using whey powder as a carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kosikowski FV. Whey utilization and whey products. J. Dairy Sci. 62: 1149–1160 (1979)

    Article  CAS  Google Scholar 

  2. Gonzfilez Siso MI. The biotechnological utilization of cheese whey: A review. Bioresource Technol. 57: 1–11 (1996)

    Article  Google Scholar 

  3. Haast JD, Britz TJ, Novellow JC. Effect of different nutrilizing treatments on the efficiency of an anaerobic digester fed with deproteinated cheese whey. J. Dairy Res. 53: 467–476 (1986)

    Article  Google Scholar 

  4. Dragone G, Mussatto SI, Almeida e Silva JB, Teixeira JA. Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenerg. 35: 1977–1982 (2011)

    Article  CAS  Google Scholar 

  5. Ozmihci S, Kargi F. Fermentation of cheese whey powder solution to ethanol in a packed-column bioreactor: Effects of feed sugar concentration. J. Chem. Technol. Biot. 84: 106–111 (2009)

    Article  CAS  Google Scholar 

  6. Ghaly AE, Kamal M, Correia LR. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production. Bioresource Technol. 96: 1143–1152 (2005)

    Article  CAS  Google Scholar 

  7. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol lowering drugs. Appl. Microbiol. Biot. 58: 555–564 (2002)

    Article  CAS  Google Scholar 

  8. Jones KD, Couldwell WT, Hinton DR, Su YH, He SK, Anker L, Law RE. Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem. Biophys. Res. Commun. 205: 1681–1687 (1994)

    Article  CAS  Google Scholar 

  9. Newman A, Clutterbuch RD, Powles RL, Millar JL. Selective inhibition of primary acute myeloid leukemia cell growth by lovastatin. Leukemia 8: 2022–2029 (1994)

    Google Scholar 

  10. Alberts AW, Chen J, Kurov G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirschfield J, Hoofsteen KJ, Liesch J, Springer J. A highly potent competitive inhibitor of hydroxymethylglutaryl coenzyme A reductase and a cholesterol-lowering agent. P. Natl. Acad. Sci. USA 77: 3957–3961 (1980)

    Article  CAS  Google Scholar 

  11. Miyake T, Uchitomi K, Zhang MY, Kono I, Nozaki N, Sammoto H, Inagaki K. Effects of principal nutrients on lovastatin production by Monascus pilosus. Biosci. Biotech. Bioch. 70: 1154–1159 (2006)

    Article  CAS  Google Scholar 

  12. Negishi S, Cai-Huang Z, Hasumi K, Murakawa S, Endo A. Productivity of monacolin K (Mevinolin) in the genus Monascus. J. Ferment. Eng. 64: 509–512 (1986)

    CAS  Google Scholar 

  13. Kennedy M, Krouse D. Strategies for improving fermentation medium performance: A review. J. Ind. Microbiol. Biot. 23: 456–475 (1999)

    Article  CAS  Google Scholar 

  14. Hajjaj H, Niederberger P, Duboc P. Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl. Environ. Microb. 67: 2596–2604 (2001)

    Article  CAS  Google Scholar 

  15. Lai LST, Hung CS, Lo CC. Effects of lactose and glucose on the production of itaconic acid and lovastatin by A. terreus ATCC 20542. J. Biosci. Bioeng. 104: 9–13 (2007)

    Article  CAS  Google Scholar 

  16. Novak N, Gerdin S, Berovic M. Increased lovastatin formation using repeated fed-batch process. Biotechnol. Lett. 19: 947–948 (1997)

    Article  CAS  Google Scholar 

  17. Sayyad SA, Panda BP, Ali M, Javed S. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl. Microbiol. Biot. 73: 1054–1058 (2007)

    Article  CAS  Google Scholar 

  18. Bas D, Boyaci IH. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78: 836–845 (2007)

    Article  CAS  Google Scholar 

  19. Myers RH, Montgomery DC. Response Surface Methodology, Process and Product Optimization Using Design Experiments. 3rd ed. John Wiley & Sons, New York, NY, USA. pp. 19–39 (2009)

    Google Scholar 

  20. Baskar G, Renganathan S. Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of l-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol. Bioproc. E. 16: 50–58 (2011)

    Article  Google Scholar 

  21. Baskar G, Renganathan S. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase. Chem. Pap. 65: 798–804 (2011)

    Article  CAS  Google Scholar 

  22. Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Chisti Y. Fermentation optimization for the production of lovastatin by Aspergillus terreus: Use of response surface methodology. J. Chem. Technol. Biot. 79: 1119–1126 (2004)

    Article  Google Scholar 

  23. Lai LST, Pan CC, Tzeng BK. The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem. 38: 1317–1326 (2003)

    Article  CAS  Google Scholar 

  24. Chang YN, Huang JC, Lee CC, Shih IL, Tzeng YM. Use of response surface methodology to optimize medium for production of lovastatin by Monascus ruber. Enzyme Microb. Technol. 30: 889–894 (2002)

    Article  CAS  Google Scholar 

  25. Samiee MS, Moazami N, Haghighi S, Mohseni FA, Mirdamadi S, Bakhtiari MA. Screening of lovastatin production by filamentous fungi. Iranian Biomed. J. 7: 29–33 (2003)

    CAS  Google Scholar 

  26. Haaland PD. Experimental Design in Biotechnology. Marcel Dekker, New York, NY, USA. pp. 61–83 (1989)

    Google Scholar 

  27. Muralidhar RV, Chirumamila RR, Marchant R, Nigam P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem. Eng. J. 9: 17–23 (2001)

    Article  CAS  Google Scholar 

  28. Szakacs G, Morovjan G, Tengerdy PR. Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnol. Lett. 20: 411–415 (1998)

    Article  CAS  Google Scholar 

  29. Rodriguez Porcel EM, Casas Lopez JL, Sanchez Perez JA, Chisti Y. Lovastatin production by Aspergillus terreus in a two-staged feeding operation. J. Chem. Technol. Biot. 83: 1236–1243 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthika, C., Sharmila, G., Muthukumaran, C. et al. Utilization of whey powder as an alternate carbon source for production of hypocholesterolemic drug by Aspergillus terreus MTCC 1281. Food Sci Biotechnol 22, 1–7 (2013). https://doi.org/10.1007/s10068-013-0220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0220-8

Keywords

Navigation