Skip to main content
Log in

Biogenic amines in foods

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Biogenic amines are produced by bacterial decarboxylation of corresponding amino acids in foods. Concentration of biogenic amines in fermented food products is affected by several factors in the manufacturing process, including hygienic of raw materials, microbial composition, fermentation condition, and the duration of fermentation. Intake of low amount of biogenic amines normally does not have harmful effect on human health. However, when their amount in food is too high and detoxification ability is inhibited or disturbed, biogenic amines could cause problem. To control concentration of BAs in food, decarboxylase activity for amino acids can be regulated. Levels of BAs can be reduced by several methods such as packaging, additives, hydrostatic pressure, irradiation, pasteurization, smoking, starter culture, oxidizing formed biogenic amine, and temperature. The objective of this review paper was to collect, summarize, and discuss necessary information or useful data based on previous studies in terms of BAs in various foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silla-Santos, M. H. (1996). Biogenic amines: Their importance in foods. Int. J. Food Microbiol., 29:213–231.

    Article  CAS  Google Scholar 

  2. ten Brink, B., Damink, C., Joosten, H. M. L. J., and Huis in’t Veld, J. H. J., (1990). Occurrence and formation of biologically amines in food. Int. J. Food Microbiol., 11:73–84.

    Article  Google Scholar 

  3. Ancín-Azpilicueta, C., González-Marco, A., and Jiménez-Moreno, N. (2008). Current Knowledge about the Presence of Amines in Wine. Crit. Rev. Food Sci. 48(3):257–275.

    Article  CAS  Google Scholar 

  4. Lehane L., and Olley, J. (2000). Histamine fish poisoning revisited. Int. J. Food Microbiol., 58:1–37.

    Article  CAS  Google Scholar 

  5. Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton, M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Ladero, V., Alvarez, M., Fernández, M., Lopez, P., dePalencia, P. F., Corbi, A., Trip, H., and Lolkema, J. S. (2010). Biogenic amine in fermented foods. Eur. J. Clin. Nutr., 64:S95–S100.

    Article  CAS  Google Scholar 

  6. Krizek, M., Dadakova, E., Vacha, F., Pelikanova, T., (2017). Comparison of the formation of biogenic amines in irradiated and smoked fish. Eur. Food. Res. Technol., 243:1–7.

    Article  CAS  Google Scholar 

  7. Luten, J., Bouque,W., Seuren, L., Burggraaf,M., Riekwel-Body, G., Durand, P., Etienne,M., Gouyo, J., Landrein, A., Ritchier, A., Leclerq, M. and Guinet, R. (1992). Biogenic amines in fishery products: Standardization methods within EC. In Quality assurance in the fish industry. pp 427–439. Huss, H., Ed. Elsevier Science Publishers.

  8. Rapid Alert System for Food and Feed (RASFF). (2010). Annual Report 2010. Publications Office of the European Union. Luxembourg (http://ec.europa.eu/RASFF).

  9. Al-Bulushi, I., Poole, S., Deeth, H. C., and Dykes, G. A. (2009). Biogenic Amines in Fish: Roles in Intoxication, Spoilage, and Nitrosamine Formation—A Review. Crit. Rev. Food Sci., 49(4):369–377.

    Article  CAS  Google Scholar 

  10. Shalaby, A.R. (1996). Significance of biogenic amines to food safety and human health. Food Res. Int., 29:675–690.

    Article  CAS  Google Scholar 

  11. Visciano, P., Schirone, M., Tofalo, R., and Suzzi, G. (2012). Biogenic amines in raw and processed seafood. Front. Microbio., 3:188.

    Article  Google Scholar 

  12. Ladero, V., Sánchez-Llana, E., Fernández, M., and Alvarez, M. A. (2011). Survival of biogenic amine-producing dairy LAB strains at pasteurisation conditions. Int. J. Food Sci. Technol., 46:516–521.

    Article  CAS  Google Scholar 

  13. Nieto-Arribas, P., Poveda, J. M., Seseňa, S., Palop L., and Cabezas, L. (2009). Technological characterization of Lactobacillus isolates from traditional Manchego cheese for potential use as adjunct starter cultures. Food Control, 20:1092–1098.

    Article  CAS  Google Scholar 

  14. Tapingkae, W., Tanasupawat, S., Parkin, K. L., Benjakul, S., and Visessanguan, W. (2010). Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products. Enzyme Microb. Tech., 46:92–99.

    Article  CAS  Google Scholar 

  15. Shalaby, A. R. (2000). Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking. Nahrung/Food, 44(1):23–7.

    Article  CAS  Google Scholar 

  16. Maijala, R. L. (1993). Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxylation agar. Lett. Appl. Microbiol., 17:40–43.

    Article  CAS  Google Scholar 

  17. Paleologos, E. K., Savvaidis, I. N., and Kontominas, M. G. (2004). Biogenic amines formation and its relation to microbiological and sensory attributes in ice-stored whole, gutted and filleted Mediterranean Sea bass (Dicentrarchus labrax), Food Microbiol., 21(5):549–557.

    Article  CAS  Google Scholar 

  18. Park, J. S., Lee, C. H., Kwon, E. Y., Lee, H. J., Kim, J. Y., and Kim, S. H. (2010). Monitoring the contents of biogenic amines in fish and fish products consumed in Korea. Food Control, 21 (9):1219–1226.

    Article  CAS  Google Scholar 

  19. Busto, O., Miracle, M., Guasch, J., and Borrull, F. (1997). Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescence derivatization. J. Chromatogr. A, 757:311–318.

    Article  CAS  Google Scholar 

  20. Linares, D. M., Martín, M. C., Ladero, V., Alvarez, M. A., and Fernández, M. (2011). Biogenic amines in dairy products. Crit. Rev. Food Sci. 51:691–703.

    Article  CAS  Google Scholar 

  21. Ruiz-Cappillas, C., and Jiménez-Colmenero, F. (2004). Biogenic Amines in Meat and Meat Products. Crit. Rev. Food Sci., 44:489–499.

    Article  CAS  Google Scholar 

  22. Suzzi, G., and Gardini, F. (2003). Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol., 88:41–54.

    Article  CAS  Google Scholar 

  23. Erim, F. B. (2013). Recent analytical approaches to the analysis of biogenic amines in food samples, Trends in Analytical Chem., 52:239–247.

    Article  CAS  Google Scholar 

  24. Naila, A., Flint, S., Fletcher, G., Bremer, P., and Meerdink, G. (2010). Control of Biogenic Amines in Food—Existing and Emerging Approaches. J. Food Sci., 75 : R139–R150.

    Article  CAS  Google Scholar 

  25. Linares, D. M., Río, B. D., Ladero, V., Martínez, N., Fernández, M., Martín, M. C., and Álvarez, M. A. (2012). Factors influencing biogenic amines accumulation in dairy products. Front. Microbio., 3:180. doi:10.3389/fmicb.2012.00180.

    Article  Google Scholar 

  26. Halász, A., Baráth, A., Simon-Sarkadi, L., and Holzapfel, W. (1994). Biogenic amines and their production by microorganisms in food. Trends Food Sci. Tech., 5:42–49.

    Article  Google Scholar 

  27. Moinard, C., Cynober, L., and De Bandt, J. P. (2005). Polyamines: metabolism and implications in human diseases. Clin. Nutr., 24:184–197.

    Article  CAS  Google Scholar 

  28. Larqué E, Sabater-Molina M, Zamora S. (2007). Biological significance of dietary polyamines. Nutrition, 23:87–95.

    Article  CAS  Google Scholar 

  29. Sass-Kiss, A., Szerdahelyi, E., Hajos, G., (2000). Study of biologically active amines in grapes and wines by HPLC. Chromatographia, 51 : S316–S320.

    Article  CAS  Google Scholar 

  30. Hernandez-Jover, T., Izquierdo-Pulido, M., Veciana-Nogués, M. T., Mariné-Font, A., and Vidal-Carou, M. C. (1997). Biogenic amine and polyamine contents in meat and meat products. J. Agr. Food Chem., 45:2098–2102.

    Article  CAS  Google Scholar 

  31. Novella-Rodríguez, S., Veciana-Nogués, M. T., Roig-Sagués, A. X., Trujillo-Mesa, A.J., and Vidal-Carou, M. C. (2004). Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. J. Dairy Res., 71:245–252.

    Article  CAS  Google Scholar 

  32. Bover-Cid, S., Izquierdo-Pulido, M., Vidal-Carou, M. C. (2001). Effectiveness of a Lactobacillus sakei starter culture in the reduction of biogenic amine accumulation as a function of the raw material quality. J. Food Prot. 64(3):367–373.

    Article  CAS  Google Scholar 

  33. Glória, M. B. A., Watson, B. T., Simon-Sarkardi, L., and Daeschel, M. A. (1998). A survey of biogenic amines in Oregon Pinot noir and Cabernet sauvignon wines. Am. J. Enol. Vitic., 49:279–282.

    Google Scholar 

  34. Kiss, J., Korbasz, M., and Sass-Kiss, A. (2006). Study of amine composition of botrytized grape berries. J. Agr. Food Chem., 53:8909–8918.

    Article  CAS  Google Scholar 

  35. Yongsawatdigul, J., Choi, Y. J., and Udomporn, S. (2004). Biogenic amines formation in fish sauce prepared from fresh and temperature- abused Indianan chovy (Stolepho- rusindicus). Food Chem. Toxicol., 69:312–319.

    Google Scholar 

  36. Huis in’t Veld, J. H. J., Hose, H., Schaafsma, G. J., Silla, H. and Smith, J. E. (1990). Health aspect of food biotechnology. In: P. Zeuthen J. C., Cheftel, C., Ericksson, T. R., Gormley, P. Link and K. Paulus (Eds). Processing and Quality of Food. Vol 2. Food biotechnology: avenues to healthy and nutritious products. Elsevier Applied Science, London and New York, 2.73–2.97.

  37. Maijala, R. and Eerola, S. (1993). Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat Sci., 35:387–395.

    Article  CAS  Google Scholar 

  38. Bauer, F., Potzelberge, D., Hellwing, E., and Paulsen, P. (1996). Formation of biogenic amines in fresh meat packed in oxygen permeable foil. In: Proceedings of the 42nd International Congress of Meat Science and Technology., pp. 552–553. Lillehammer, Norway.

  39. Durlu-Ozkaya, F., Ayhan, K., and Vural, N. (2001). Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Sci., 58:163–166.

    Article  CAS  Google Scholar 

  40. Roig-Sagués, A. X. and Eerola, S. (1997). Biogenic amines in meat inoculated with Lactobacillus sake starter strains and an amine-positive lactic acid bacterium. Z. Lebensm. Unters. F. A., 205:227–231.

    Article  Google Scholar 

  41. Gardini, F., Tofalo, R., Belletti, N., Iucci, L., Suzzi, G., Torriani, S., Guerzoni, M. E., and Lanciotti, R. (2006). Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol., 23:641–648.

    Article  CAS  Google Scholar 

  42. Rodríguez-Jerez, J. J., Mora-Ventura, M. T., López-Sabater, E. I., and Hernández-Herrero, M. (1994). Histidine, Lysine and Ornithine Decarboxylase Bacteria in Spanish Salted Semi-preserved. Anchovies. J. Food Prot., 57:784–787.

    Article  Google Scholar 

  43. Taylor, S.L. and Speckhard, M. W. (1983). Isolation of histamine-producing bacteria from frozen tuna. Mar. Fish. Rev., 45:35–39.

    Google Scholar 

  44. Middlebrooks, B. L., Toom, P. M., Douglas, W. L., Harrison, R. E., and Mcdowell, S. (1988). Effects of storage time and temperature on the microflora and amine development in Spanish Mackerel (Scomberomorus maculatus). J. Food Sci., 53:1024–1029.

    Article  CAS  Google Scholar 

  45. Pessione, E., Mazzoli, R., Giuffrida, M. G, Lamberti, C., Garcia-Moruno, E., Barello, C., Conti, A., and Giunta, C. (2005). A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics, 5:687–698.

    Article  CAS  Google Scholar 

  46. Gezginc, Y., Akyol, I., Kuley, E., and Özogul, F. (2013). Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem., 138:655–662.

    Article  CAS  Google Scholar 

  47. Kung, H. F., Tsai, Y. H., and Wei, C. I. (2007a). Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chem., 101:351–356.

    Article  CAS  Google Scholar 

  48. Kung, H. F., Lee, Y. H., Chang, S. C., Cheng-I Wei, C. I., and Tsai, Y. H. (2007b). Histamine contents and histamine-forming bacteria in sufu products in Taiwan. Food Control., 18:381–386.

    Article  CAS  Google Scholar 

  49. Tsai, Y. H., Chang, S. C., and Kung, H. F. (2007a). Histamine contents and histamine- forming bacteria in natto products in Taiwan. Food Control, 18:1026–1030.

    Article  CAS  Google Scholar 

  50. Tsai, Y. H., Kung, H. F., Chang, S. C., Lee, T. M., and Wei, C. I. (2007b). Histamine formation by histamine-forming bacteria in douchi, a Chinese traditional fermented soybean product. Food Chem., 103:1305–1311.

    Article  CAS  Google Scholar 

  51. Masson, F., Johansson, G., and Montel, M. C. (1999). Tyramine production by a strain of Carnobacterium divergens inoculated in meat-fat mixture. Meat Sci., 52:65–69.

    Article  CAS  Google Scholar 

  52. EFSA Panel on Biological Hazards (BIOHAZ). (2011). Scientific opinion on risk based control of biogenic amine formation in fermented foods. ESFA Journal, 9, 2393.

    Google Scholar 

  53. Marcobal, A., Martin-Alvarez, P. J., Polo, M. C., Munoz, R., and Moreno-Arribas, M. V. (2006). Formation of biogenic amines throughout the industrial manufacture of red wine. J. Food Prot., 69:397–404.

    Article  CAS  Google Scholar 

  54. Krizek, M., Pavlicek, T. and Vacha, F. (2002). Formation of selected biogenic amines in carp meat. J. Sci. Food Agr., 82:1088–1093.

    Article  CAS  Google Scholar 

  55. Moreno-Arribas, M. V and Lonvaud-Funel, A. (2001). Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis. FEMS Microbiol. Lett., 195:103–107.

    Article  CAS  Google Scholar 

  56. Gardini, F., Zaccarelli, A., Belletti, N., Faustini, F., Cavazza, A., Martuscelli, M., Mastrocola, D., and Suzzi, G. (2005). Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control, 16: 609–616.

    Article  CAS  Google Scholar 

  57. Maijala, R., Eerola, S., Aho, M., and Hirn, J. (1993). The effect of GDL-induced pH decrease on the formation of biogenic amines in meat. J. Food Prot., 56:125–129.

    Article  CAS  Google Scholar 

  58. Mah, J. H., Han, H. K., Oh, Y. J., and Kim, M. J. (2002). Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem., 79:239–243.

    Article  CAS  Google Scholar 

  59. Prester, L., (2011). Biogenic amines in fish, fish products and shellfish: a review. Food Add. Cont., 28:1547–1560.

    Article  CAS  Google Scholar 

  60. Smith, T.A. (1980). Amines in food. Food Chem., 6:169–200.

    Article  Google Scholar 

  61. Stratton, J. E., Hutkins, R. W., and Taylor, S. L. 1991. Biogenic amines in cheese and other fermented food: A review. J. Food Prot., 54:460–470.

    Article  CAS  Google Scholar 

  62. Prester, Lj. (2011). Biogenic amines in fish, fish products and shellfish: a review. Food Add. Contam., 28:1547–1560.

    Article  CAS  Google Scholar 

  63. Auerswald, L., Morren, C., and Lopata, A. L. (2006). Histamine levels in seventeen species of fresh and processed South African seafood. Food Chem., 98:231–239.

    Article  CAS  Google Scholar 

  64. Carelli, D., Centonze, D., Palermo, C., Quinto, M., and Rotunno, T. (2007). An interference free amperometric biosensor for the detection of biogenic amines in food products. Biosens. Bioelectron., 23(5):640–647.

    Article  CAS  Google Scholar 

  65. Klausen, N. K., and Lund, E. (1986). Formation of biogenic amines in herring and mackerel. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 182(6):459–463.

    Article  CAS  Google Scholar 

  66. Staruszkiewicz, W. F., Barnett, J. D., Rogers, P. L., Benner, R. A. Jr., Wong, L. L., and Cook, J. (2004). Effects of on-board and dockside handling on the formation of biogenic amines in mahi-mahi (Coryphaena hippurus), skipjack tuna (Katsu- wonus pelamis), and yellowfin tuna (Thunnus albacares). J. Food Prot., 67:134–141.

    Article  CAS  Google Scholar 

  67. Naila, A., Flint, S., Fletcher, G. C., Bremer, P. J., and Meerdink, G. (2011). Biogenic amines and potential histamine – forming bacteria in rihaakuru (a cooked fish paste). Food Chem.128: 479–484.

    Article  CAS  Google Scholar 

  68. Tsai, Y. H., Lin, C. Y., Chien, L. T., Lee, T. M., Wei, C. I., and Hwang, D. F. (2006). Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem., 98:64–70.

    Article  CAS  Google Scholar 

  69. Huang, Y. R., Liu, K. J., Hsieh, H. S., Hsieh, C. H., Hwang, D. F., and Tsai, Y. H. (2010). Histamine level and histamine-forming bacteria in dried fish products sold in Penghu Island of Taiwan. Food Control21:1234–1239.

    Article  CAS  Google Scholar 

  70. Zhai, H., Yang, X., Li, L., Xia, G., Cen, J., Huang, H., and Hao, S. (2012). Biogenic amines in commercial fish and fish products sold in southern china. Food Control25:303–308.

    Article  CAS  Google Scholar 

  71. FDA (Food and Drug Administration). (2011). Scombrotoxin (histamine) formation, fish and fishery products hazards and controls guidance (4th ed. pp. 113–152). Washington, DC: Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood.

  72. EC. (1991). Council Directive 91/493/EEC of 22 July, Laying down the health conditions for the production and the placing on the market of fishery products. Official Journal of European Commission, L268, 15–32.

    Google Scholar 

  73. Simon-Sarkadi, L., Pásztor-Huszár, K., Dalmadi, I., and Kiskó, G. (2012). Effect of high hydrostatic pressure processing on biogenic amine content of sausage during storage. Food Res. Int., 47:380–384.

    Article  CAS  Google Scholar 

  74. Parente, E., Martuscelli, M., Gardini, F., Grieco, S., Crudele, M. A., and Suzzi, G. (2001). Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol., 90:882–891.

    Article  CAS  Google Scholar 

  75. Talon, R., and Leroy, S. (2011). Diversity and safety hazards of bacteria involved in meat fermentation. Meat Sci., 89:303–309.

    Article  CAS  Google Scholar 

  76. Latorre-Moratalla, M. L., Bover-Cid, S., Talon, R., Garriga, M., Aymerich, T., Zanardi, E., Ianieri, A., Fraqueza, M. J., Elias, M., Drosinos, E. H., Lauková, A., and Vidal-Carou, M. C. (2010). Distribution of aminogenic activity among potential autochthonous starter cultures. J. Food Prot., 73:524–525.

    Article  CAS  Google Scholar 

  77. Komprda, T., Smela, D., Pechova, P., Kalhotka, L., Stencl, J., and Klejdus, B. (2004). Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Sci., 67:607–616.

    Article  CAS  Google Scholar 

  78. Roig-Sagués, A. X., Molina, A. P., and Hernandez-Herrero, M. M. (2002). Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. Eur. Food Res. Technol., 215:96–100.

    Article  CAS  Google Scholar 

  79. Gardini, F., Martuscelli, M., Caruso, M. C., Galgano, F., Crudele, M. A., Favati, F., Guerzoni, M. E., and Suzzi, G. (2001). Effect of pH, temperature and NaCl concentration on the growth kinetic, proteolytic activity and biogenic amines production of Enterococcus faecalis. Int. J. Food Microbiol., 64:105–117.

    Article  CAS  Google Scholar 

  80. Fernández, M., Linares, D. M., del Rio, B., Ladero, V., and Álvarez, M. A. (2007b). HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. J. Dairy Res., 74:276–282.

    Article  CAS  Google Scholar 

  81. Yongmei, L., Xiaohong, C., Mei, J., Xin, L., Rahman, N., Mingsheng, D., and Yan, G. (2009). Biogenic amines in Chinese soy sauce. Food Control, 20:593–597.

    Article  CAS  Google Scholar 

  82. Kim, J. H., Ahn, H. J., Kim, D. H., Jo, C., Yook, H. S., and Byun, M. W. (2003). Irradiation effects on biogenic amines in Korean fermented soybean paste during fermentation. J. Food Sci., 68:80–84.

    Article  CAS  Google Scholar 

  83. Kim, B., Byun, B. Y, and Mah, J. H. (2012). Biogenic amine formation and bacterial contribution in Natto products. Food Chem., 135: 2005–2011.

    Article  CAS  Google Scholar 

  84. Rabie, M. A, Siliha, H., El-Saidy, S., El-Badawy, A. A., and Malcata, F. X. (2011a). Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chem., 129:1778–1782.

    Article  CAS  Google Scholar 

  85. Henríquez-Aedo, K., Vega, M., Prieto-Rodríguez, S., and Aranda, M. (2012). Evaluation of biogenic amines content in chilean reserve varietal wines. Food Chem. Toxicol., 50:2742–2750.

    Article  CAS  Google Scholar 

  86. González-Marco, A., Jiménez-Moreno, N., and Ancín-Azpilicueta, C. (2006). Influence of addition of yeast autolysate on the formation of amines in wine. J. Sci. Food Agr., 86:2221–2227.

    Article  CAS  Google Scholar 

  87. Kanotor, A., Kacaniova, M., Pachlova, V. (2015). Biogenic amines content in different wine samples. J. Micro. Biotech. Food Sci., 4:37–40.

    Article  CAS  Google Scholar 

  88. Torrea, D., and Ancín, C. (2002). Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentations. J. Agric. Food Chem., 50:4895–4899.

    Article  CAS  Google Scholar 

  89. Ozogul, F., Hamed, I. (2017). The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit. Rev. Food Sci. Nutr., 27:1–11.

    Article  CAS  Google Scholar 

  90. Smit, A. Y., Toit, M. (2013). Evaluating the Influence of Malolactic Fermentation Inoculation Practices and Ageing on Lees on Biogenic Amine Production in Wine. Food Bioprocess Technol., 6:198–206.

    Article  CAS  Google Scholar 

  91. Henríquez-Aedo, K., Vega, M., Prieto-Rodríguez, S., and Aranda, M. (2012). Evaluation of biogenic amines content in chilean reserve varietal wines. Food Chem. Toxicol., 50:2742–2750.

    Article  CAS  Google Scholar 

  92. Fogel, W. A., Lewinski, A., and Jochem, J. (2007). Histamine in food: is there anything to worry about? Biochem. Soc. Trans., 35(2):349–352.

    Article  CAS  Google Scholar 

  93. Anderson, A. K. (2008). Biogenic and volatile amine-related qualities of three popular fish species sold at Kuwait fish markets. Food Chem., 107:761–767.

    Article  CAS  Google Scholar 

  94. Nout, M. J. R. (1994). Fermented foods and food safety. Food Res. Int., 27:291–296.

    Article  CAS  Google Scholar 

  95. Maintz, L., and Novak, N. (2007). Histamine and histamine intolerance. Am. J. Clin. Nutr. 85:1185–1196.

    CAS  Google Scholar 

  96. Hungerford, J. M. (2010). Scombroid poisoning: a review. Toxicon. 56:231–243.

    Article  CAS  Google Scholar 

  97. Stockley’s Drug Interactions. (2011). The Royal Pharmaceutical Society of Great Britain. (Downloaded on 27 April 2011: www.medicinescomplete.com/mc/stockley/current/x18-1097.htm).

  98. Bjeldanes, L. F., Schutz, D. E., and Morris, M. M. (1978). On the aetiology of scombroid poisoning cadaverine potentiation histamine toxicity in guinea pig. Food Cosmet. Toxicol., 16:157–159.

    Article  CAS  Google Scholar 

  99. Eerola, S., Sagues, A. X. R., Lilleberg, L., and Aalto, H. (1997). Biogenic amines in dry sausages during shelf-life storage. Zeitung Lebensmittel fur Untersuchung und Forschung A, 205:351–355.

    Article  CAS  Google Scholar 

  100. Sandler, M., Youdin., M. B. H., and Hanington, E. (1974). A phenylethylamine oxidizing defect in migraine. Nature, 250:335–336.

    Article  CAS  Google Scholar 

  101. Özogul, F., and Özogul, Y. (2006). Biogenic amine content and biogenic amine quality indices of sardine (Sardina pilchardus) stored at modified atmosphere packaging and vacuum packaging. Food Chem., 99: 574–578.

    Article  CAS  Google Scholar 

  102. Yassoralipour, A., Bakar, J., Rahman, R. A., and Bakar, F. A. (2012). Biogenic amines formation in barramundi (Lates calcarifer) fillets at 8°C kept in modified atmosphere packaging with varied CO2 concentration. LWT-Food Sci. Technol., 48:142–146.

    Article  CAS  Google Scholar 

  103. Mohan, C. O., Ravishankar, C. N., Gopal, T. K. S., Kumar, K. A., and Lalitha, K. V. (2009). Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with O2 scavenger during chilled storage. Food Res. Int., 42:411–416.

    Article  CAS  Google Scholar 

  104. Patsias, A., Chouliara, I., Paleologos, E. K., Savvaidis, I., and Kontominas, M. G. (2006). Relation of biogenic amines to microbial and sensory changes of precooked chicken meat stored aerobically and under modified atmosphere packaging at 4 C. Eur. Food Res. Technol., 223:683–689.

    Article  CAS  Google Scholar 

  105. Özogul, F., Taylor, K. D. A., Quantick, P. and Özogul, Y. (2002). Changes in Biogenic Amines in Herring Stored under Modified Atmosphere and Vacuum Pack. J Food Sci., 67(7):2497–2501.

    Article  Google Scholar 

  106. Dalgaard, P., Madsen, H. L., Samieian, N. and Emborg, J. (2006). Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone) – effect of modified atmosphere packaging and previous frozen storage. J. Appl. Microbiol. 101(1):80–95.

    Article  CAS  Google Scholar 

  107. Ruiz-Capillas, C., and Moral, A. (2001). Effect of controlled atmosphere enriched with O2 in formation of biogenic amines in chilled hake (Merluccius merluccius L). Eur. Food Res. Technol., 212(5):546–550.

    Article  CAS  Google Scholar 

  108. Yuecel, U., and Ueren, A. (2008). Biogenic amines in Turkish type pickled cabbage: effects of salt and citric acid concentration. Acta Aliment, 37(1):115–22.

    Article  CAS  Google Scholar 

  109. Bozkurt, H., and Erkmen, O. (2004). Effects of temperature, humidity and additives on the formation of biogenic amines in sucuk during ripening and storage periods. Food Sci. Technol. Int. 10(1):21–28.

    Article  CAS  Google Scholar 

  110. González-Fernández, C., Santos, E., Jaime, I., and Rovira, J. (2003). Influence of starter cultures and sugar concentrations of biogenic amine contents in chorizo dry sausage. Food Microbiol., 20:275–284.

    Article  CAS  Google Scholar 

  111. Mah, J. H., Kim, Y. J., and Hwang, H. J. (2009). Inhibitory effects of garlic and other spices on biogenic amine production in Myeolchi-jeot, Korean salted and fermented anchovy product. Food Control, 20:449–454.

    Article  CAS  Google Scholar 

  112. Roseiro, C., Santos, C., Sol, M., Silva, L. and Fernandes, I. (2006). Prevalence of biogenic amines during ripening of a traditional dry fermented pork sausage and its relation to the amount of sodium chloride added. Meat Sci., 74(3):557–563.

    Article  CAS  Google Scholar 

  113. Henry Chin, K. D., and Koehler, P. E. (1986). Effects of salt concentration and incubation temperature on formation of histamine, phenethylamine. Tryptamine and tyramine during miso fermentation. J. Food Prot., 49:423–427.

    Article  Google Scholar 

  114. Kongpun, O. and Suwansakornkul, P. (2000). Histamine formation during salting of Spanish mackerel (Scomberomoms commerson). J. Aquat. Food Prod. T., 9(1):21–30.

    Article  CAS  Google Scholar 

  115. Lanciotti, R., Patrignani, F., Iucci, L., Guerzoni, M. E, Suzzi, G., Belletti, N., and Gardini, F. (2007). Effects of milk high pressure homogenization on biogenic amine accumulation during ripening of ovine and bovine Italian cheeses. Food Chem., 104: 693–701.

    Article  CAS  Google Scholar 

  116. Latorre-Moratalla, M. L., Bover-Cid, S., Aymerich, T., Marcos, B., Vidal-Carou, M. C., and Garriga, M. (2007). Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture. Meat Sci., 75(3):460–469.

    Article  CAS  Google Scholar 

  117. Ruiz-Capillas, C., Carballo, J. and Jiménez-Colmenero, F. (2007). Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: Effect of chilled storage. Food Chem., 104:202–208.

    Article  CAS  Google Scholar 

  118. Calzada, J., del Olmo, A., Picón, A., Gaya, P., and Nuñez, M. (2013). Reducing Biogenic- Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments. Appl. Environ. Microbiol., 79:1277–1283.

    Article  CAS  Google Scholar 

  119. Mendes, R., Silva, H. A., Nunes, M. L. and Empis, J. M. A. (2000). Deteriorative changes during ice storage of irradiated blue jack mackerel. J. Food Biochem., 24: 89–105.

    Article  Google Scholar 

  120. Mbarki, R., Sadok, S., and Barkallah, I. (2008). Influence of Gamma Irradiation on Microbiological, Biochemical, and Textural Properties of Bonito (Sarda sarda) During Chilled Storage. Food Sci. Technol. Int. 14:367–373.

    Article  CAS  Google Scholar 

  121. Kim, J. H., Kim, D. H., Ahn, H. J., Park, H. J., and Byun, M. W. (2005b). Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control, 16:43–49.

    Article  CAS  Google Scholar 

  122. Kim, J. H., Ahn, H. J., Lee, J. W., Park, H. J., Ryu, G. H., Kang, I. J., and Byun, M. W. (2005a). Effects of gamma irradiation on the biogenic amines in pepperoni with different packaging conditions. Food Chem., 89:199–205.

    Article  CAS  Google Scholar 

  123. Rabie, M. A., Siliha, H., El-Saidy, S., El-Badawy, A. A., and Malcata, F. X. (2010) Effects of γ- irradiation upon biogenic amine formation in Egyptian ripened sausages during storage. Innov. Food Sci. Emerg. Technol., 11:661–665.

    Article  CAS  Google Scholar 

  124. Min, J. S., Lee, S. O., Jang, A., Jo, C., and Lee, M. (2007). Control of microorganisms and reduction of biogenic amines in chicken breast and thigh by irradiation and organic acids. Poultry Sci., 86:2034–2041.

    Article  CAS  Google Scholar 

  125. Rabie, M. A., Siliha, I. H., El-Saidy, M. S., El Badawy, A.A., and Malcata, F. X. (2011b) Effect of γ-irradiation upon biogenic amine formation in blue cheese during storage. Int. Dairy J., 21:373–376.

    Article  CAS  Google Scholar 

  126. Gennaro, M. C., Gianotti, V., Marengo, E., Pattono, D., and Turi, R. M. (2003) A chemometric investigation of the effect of the cheese-making process on contents of biogenic amines in a semi-hard Italian cheese (Toma). Food Chem., 82:545–551.

    Article  CAS  Google Scholar 

  127. Křížek, M., Vácha, F., and Pelikánová, T. (2011). Biogenic amines in carp roe (Cyprinus carpio) preserved by four different methods. Food Chem., 126:1493–1497.

    Article  CAS  Google Scholar 

  128. Martuscelli, M., Pittia, P., Casamassima, L. M, Manetta, A. C., Lupieri, L., and Neri, L. (2009). Effect of intensity of smoking treatment on the free amino acids and biogenic amines occurrence in dry cured ham. Food Chem., 116:955–962.

    Article  CAS  Google Scholar 

  129. Rabie, M. A., Elsaidy, S., el-Badawy, A. A., Siliha, H., and Malcata, F. X. (2011c). Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J. Food Prot., 74:681–685.

    Article  CAS  Google Scholar 

  130. La Gioia, F., Rizzotti, L., Rossi, F., Gardini, F., Tabanelli, G., and Torriani, S. (2011). Identification of a tyrosine decarboxylase gene (tdcA) in Streptococcus thermophilus 1TT45 and analysis of its expression and tyramine production in milk. Appl. Environ. Microbiol., 77:1140–1144.

    Article  CAS  Google Scholar 

  131. Gardini, F., Martuscelli, M., Crudele, M. A., Paparella, A., and Suzzi, G. (2002). Use of Staphylococcus xylosus as astarter culture in dried sausages: effect on the biogenic amine content. Meat Sci., 61:275–283.

    Article  CAS  Google Scholar 

  132. García-Ruiz, A., González-Rompinelli, E. M., Bartolomé, B., and Moreno- Arribas, M. V. (2011). Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol., 148:115–120.

    Article  CAS  Google Scholar 

  133. Zaman, M. Z., Abu-Bakar, F., Jinap, S., and Bakar, J. (2011). Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. Int. J. Food Microbiol., 145: 84–91.

    Article  CAS  Google Scholar 

  134. Ayhan, K., Kolsarici, N., and Özkan, G. A. (1999). The effects a starter culture on the formation of biogenic amines in Turkish soudjoucks. Meat Sci., 53:183–188.

    Article  CAS  Google Scholar 

  135. Lu, S., Xu, X., Zhou, G., Zhu, Z., Meng, Y., and Sun, Y. (2010). Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food Control, 21:444–449.

    Article  CAS  Google Scholar 

  136. Domínguez R., Munekata P. E., Agregan R., Lorenzo J. M. (2016). Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT-Food Sci and Technol., 71:47–53.

    Article  CAS  Google Scholar 

  137. Yongsawatdigul, J., Rodtong, S., and Raksakulthai, N. (2007). Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. J. Food Sci., 72(9):M382–M390.

    Article  CAS  Google Scholar 

  138. Leuschner, R. G. K., and Hammes, W. P. (1998a). Tyramine degradation by micrococci during ripening of fermented sausage. Meat Sci. 49(3):289–96.

    Article  CAS  Google Scholar 

  139. Dapkevicius, M. L. N. E., Nout, M. J. R., Rombouts, F. M., Houben, J. H., and Wymenga, W. (2000). Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol., 57(1–2):107–14.

    Article  CAS  Google Scholar 

  140. Mah, J. H., and Hwang, H. J. (2009). Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control, 20(9):796–801.

    Article  CAS  Google Scholar 

  141. Leuschner, R. G. K., and Hammes, W. P. (1998b). Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J. Food Prot. 61:874–878.

    Article  CAS  Google Scholar 

  142. Cueva, C., Garcĺa-Ruiz, A., González-Rompinelli, E., Bartolome, B., Martín-Álvarez, P. J., Salazar, O., Vicente, M. F., Bills, G. F., & Moreno-Arribas, M. V. (2012). Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. J. Appl. Microbiol., 112:672–682.

    Article  CAS  Google Scholar 

  143. Bunková, L., Bunka, F., Mantlová, G., Cablová, A., Sedlácek, I., Švec, P., Pachlová, V., and Krácmar, S. (2010). The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese. Food Microbiol., 27:880–888.

    Article  CAS  Google Scholar 

  144. Bover-Cid, S., and Holzapfel, W. H. (1999b). Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol., 53:33–41.

    Article  CAS  Google Scholar 

  145. Huang B. (2016). Detection and control of biogenic amine content and physical/chemical properties based on HPLC method in fermented food. Carpathian Journal of Food Science and Technology 8(1), 5–13.

    CAS  Google Scholar 

  146. Novella-Rodrguíez, S., Veciana-Nogués, M. T., Izquierdo-Pulido, M., and Vidal-Carou, M. C. (2003). Distribution of biogenic amines and polyamines in cheese. J. Food Sci., 3:750–755.

    Article  Google Scholar 

  147. Romano, A., Klebanowski, H., Guerche, H., Beneduce, L., Spano, G., Murat, M. L., Lucas, P. (2012). Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem., 135: 1392–1396.

    Article  CAS  Google Scholar 

  148. Palermo, C., Muscarella, M., Nardiello, D., Iammarino, M., Centonze, D. (2013). A multiresidual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal. Bioanal. Chem., 405:1015–1023.

    Article  CAS  Google Scholar 

  149. Keow, C.M., Bakar, F.A., Salleh, A.B., Heng, L.Y., Wagiran, R., and Bean, L.S. (2007). An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Panaeus monodon) spoilage. Food Chem., 105:1636–1641.

    Article  CAS  Google Scholar 

  150. Paproski, R.E., Roy, K.I., and Lucy, C.A., (2002). Selective fluorometric detection of polyamines using micellar electrokinetic chromatography with laser-induced fluorescence detection. J. Chromatogr. A, 946:265–273.

    Article  CAS  Google Scholar 

  151. Martuscelli, M., Arfelli, G., Manetta, A. C., and Suzzi, G. (2013). Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chem. 140: 590–597.

    Article  CAS  Google Scholar 

  152. Shukla, S., Park, H. K., Kim, J. K, and Kim, M. (2010). Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang). Food Chem. Toxicol., 48:1191–1195.

    Article  CAS  Google Scholar 

  153. Mayr, C. M., and Schieberle, P. (2012). Development of Stable Isotope Dilution Assays for the Simultaneous Quantitation of Biogenic Amines and Polyamines in Foods by LC-MS/MS. J. Agr. Food Chem., 60:3026–3032.

    Article  CAS  Google Scholar 

  154. Innocente, N.; Biasutti, M.; Padovese, M., and Moret, S. (2007). Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem., 101:1285–1289.

    Article  CAS  Google Scholar 

  155. Ozdestan, O., and Uren, A. (2009). A method for benzoyl chloride derivatization of biogenic amines for high performance liquid chromatography. Talanta, 78:1321–1326.

    Article  CAS  Google Scholar 

  156. Pereira, V., Pontes, M., Câmara, J. S., and Marques, J. C. (2008). Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. J. Chromatogr. A, 1189:435–443.

    Article  CAS  Google Scholar 

  157. Tang, T., Qian, K., Shi, T., Wang, F., Li, J., Cao, Y., and Hu, Q. (2011). Monitoring the contents of biogenic amines in sufu by HPLC with SPE and pre-column derivatization. Food Control, 22:1203–1208.

    Article  CAS  Google Scholar 

  158. Fernándes, J. O., and Ferreira, M. A. (2000). Combined ion-pair extraction and gas chromatography-mass spectrometry for the simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. J. Chromatogr. A, 886:183–195.

    Article  Google Scholar 

  159. Kvasnicka, F., and Voldrich, M. (2006). Determination of biogenic amines by capillary zone electrophoresis with conductometric detection. J. Chromatogr. A, 1103:145–149.

    Article  CAS  Google Scholar 

  160. Mayker, H. K., Fiechter, G., Fischer, E. (2010). A new ultra-pressure liquid chromatography method for the determination of biogenic amines in cheese. J. Chromatography A, 1217:3251–3257.

    Article  CAS  Google Scholar 

  161. Marcobal, A., Polo, M. C, Martín-Alvarez, P. J, and Moreno-Arribas, M. V. (2005). Biogenic amine content of red Spanish wines: Comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Res. Int., 38:387–394.

    Article  CAS  Google Scholar 

  162. Dadakova, E., Krizek, M., and Pelikanova, T. (2009). Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem., 116:365–370.

    Article  CAS  Google Scholar 

  163. Lee, S., Eom, H. S., Yoo, M., Cho, Y., and Shin, D. (2011). Determination of Biogenic Amines in Cheonggukjang Using Ultra High Pressure Liquid Chromatography Coupled with Mass Spectrometry. Food Sci. Biotechnol., 20:123–129.

    Article  CAS  Google Scholar 

  164. Wimmerova, M. and Macholan, L. (1999). Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilization. Biosens. Bioelectron., 14:695–702.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This review was supported by the Chung-Ang University Research Scholarship Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Sub Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doeun, D., Davaatseren, M. & Chung, MS. Biogenic amines in foods. Food Sci Biotechnol 26, 1463–1474 (2017). https://doi.org/10.1007/s10068-017-0239-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0239-3

Keywords

Navigation