Skip to main content
Log in

Lipid oxidation and its implications to meat quality and human health

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lipid oxidation not only negatively influences the sensory characteristics but also the functional characteristics of meat. During the process, various primary and secondary by-products are formed depending upon the types of fatty acids, oxygen availability, and the presence of pro- and antioxidants. Some of the lipid oxidation products only influence the quality of meat but others are implicated to various diseases and human health. Therefore, prevention of lipid oxidation in meat is important for meat quality and for human health as well. The imbalance of oxidants and antioxidants that favors oxidants in the biological system is called oxidative stress in the body. Although the body is equipped with defense enzymes and antioxidant compounds, there are many sources of oxidants or free radicals that can destroy the oxidants/antioxidants balance. Therefore, supply of extra antioxidants through food can help maintaining the balance in favor of antioxidants and help preventing various diseases and malfunctions of our body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed I, Lin H, Zou L, Brody AL, Li Z, Qazi IM, Pavase TR, Lv LA. Comprehensive review on the application of active packaging technologies to muscle foods. Food Cont. 82: 163–178 (2017)

    Article  CAS  Google Scholar 

  • Ahn DU, Kim SM. Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked meat homogenates are different from those in raw-meat homogenates. Poult. Sci. 77: 348–355 (1998)

    Article  CAS  Google Scholar 

  • Ahn DU, Lee EJ, Feng X, Zhang W, Lee JH, Jo C, Nam KC. Mechanisms of volatile production from non-sulfur amino acids by irradiation. Radiat. Phys. Chem. 119: 64–73 (2016)

    Article  CAS  Google Scholar 

  • Ahn DU, Wolfe FH, Sim JS. Dietary α-linoleic acid and mixed tocopherols, and packaging influences on lipid stability in broiler chicken breast and leg muscle. J. Food Sci. 60: 1013–1018 (1995)

    Article  CAS  Google Scholar 

  • Ahn DU, Wolfe FH, Sim JS. Prevention of lipid oxidation in pre-cooked turkey meat patties with hot packaging and antioxidant combinations. J. Food Sci. 58: 283–287 (1993a)

    Article  CAS  Google Scholar 

  • Ahn DU, Wolfe FH, Sim JS. The effect of free and bound iron on lipid peroxidation in turkey meat. Poult. Sci. 72: 209–215 (1993b)

    Article  CAS  Google Scholar 

  • Ahn DU, Wolfe FH, Sim JS. The effect of metal chelators, hydroxyl radical scavengers, and enzyme systems on the lipid peroxidation of raw turkey meat. Poult. Sci. 72: 1972–1980 (1993c)

    Article  CAS  Google Scholar 

  • Ahn DU, Ajuyah A, Wolfe FH, Sim JS. Oxygen availability affects in prooxidant catalyzed lipid oxidation of cooked turkey patties. J. Food Sci. 58: 278–282 (1993d)

    Article  CAS  Google Scholar 

  • Ahn DU, Wolfe FH, Sim JS, Kim DH. Packaging cooked turkey meat patties while hot reduces lipid oxidation. J. Food Sci. 57: 1075–1077, 1115 (1992)

    Article  Google Scholar 

  • Aikens J, Dix TA. Hydroxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies. Arch. Biochem. Biophys. 305: 516–525 (1992)

    Article  Google Scholar 

  • Aikens J, Dix TA. Perhydroxyl radical (HOO·) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem. 266: 15091–15098 (1991)

    CAS  PubMed  Google Scholar 

  • Al-Hijazeen M, Lee EJ, Mendonca A, Ahn DU. Effect of oregano essential oil (Origanum vulgare subsp. Hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidants 5: 18 (2016). https://doi.org/10.3390/antiox5020018

    Article  CAS  PubMed Central  Google Scholar 

  • Al-Hijazeen M, Mendonca A, Lee EJ, Ahn DU. The effect of oregano oil and tannic acid combinations on the quality and sensory characteristics of cooked chicken meat. Poult. Sci. 97: 676–683 (2018)

    Article  CAS  Google Scholar 

  • Bellés M, Leal LN, Diaz V, Alonso V, Roncales P, Beltran JA. Effect of dietary vitamin E on physicochemical and fatty acid stability of fresh and thawed lamb. Food Chem. 239: 1–8 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK. Does the Interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. (2016). https://doi.org/10.1155/2016/5698931

    Book  Google Scholar 

  • Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300: 535–543 (1993)

    Article  CAS  PubMed  Google Scholar 

  • Carlsen CU, Moller JKS, Skipsted LH. Heme-iron in lipid oxidation. Coord Chem. Rev. 249: 485–498 (2005)

    Article  CAS  Google Scholar 

  • Chen Q, Zhu Q, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br. J. Pharmacol. 175: 1279–1292 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Cossu C, Doyotte A, Jacquin MC, Babut M, Exinger A, Vasseur P. Glutathione reductase, selenium-dependent glutathione peroxidase, glutathione levels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkers of aquatic contamination in field studies. Ecotoxicol. Environ. Saf. 38: 122–131 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Cross HR, Leu R, Miller MF. Scope of warmed-over flavor and its importance to meat industry. pp. 1–18. In: Warmed-Over Flavor of Meat. St. Angelol AJ, Milton ME (ed). Academic Press, London (1987)

    Google Scholar 

  • Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai E, Puskás F, Száraz P, Szelényi P, Bánhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochem. Biophys. Acta 1852: 826–838 (2015)

    CAS  PubMed  Google Scholar 

  • Davies MJ. The oxidative environment and protein damage. Biochem. Biophys. Acta (BBA) Proteins Proteom. 1703: 93–109 (2005)

    Article  CAS  Google Scholar 

  • Davies KJA. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50: 279–289 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47–95 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Du M, Nam KC, Ahn DU. Cholesterol and lipid oxidation products in cooked meat as affected by raw meat packaging and irradiation, and cooked meat packaging and storage time. J. Food Sci. 66: 1396–1401 (2001)

    Article  CAS  Google Scholar 

  • Embuscado ME. Spices and herbs: natural sources of antioxidants—a mini review. J. Funct. Sci. 18: 811–819 (2015)

    Article  CAS  Google Scholar 

  • Falowo AB, Fayemi PO, Muchenje V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: a review. Food Res. Int. 64: 171–181 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhao Y, Warner RD, Johnson SK. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 61: 60–71 (2017)

    Article  CAS  Google Scholar 

  • Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Riviera G, Valadez-Vega C, Morales-Gonzalez C. Inflammation, oxidative stress and obesity. Int. J. Mol. Sci. 12: 3117–3132 (2011)

    Article  CAS  Google Scholar 

  • Frankel EN. Chapter 1. Free radical oxidation. 2nd ed., pp. 15–24. In: Lipid Oxidation. Woodhead Publishing Ltd, Cambridge (2005)

  • Frankel EN. Lipid oxidation: mechanisms, products and biological significance. J. Am. Oil Chem. Soc. 61: 1908–1917 (1984)

    Article  CAS  Google Scholar 

  • Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 23: 1144–1170 (2015)

    Article  CAS  Google Scholar 

  • Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871–1875 (2001)

    Article  CAS  Google Scholar 

  • Furukawa S, Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 114: 1752–1761 (2017)

    Article  Google Scholar 

  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 482: 419–425 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants 7: 62 (2018). https://doi.org/10.3390/antiox7050062

    Article  CAS  PubMed Central  Google Scholar 

  • Giles GI, Jacob C. Reactive sulfur species: an emerging concept in oxidative stress. Biol. Chem. 383: 375–388 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Gray JI, Gomaa EA, Buckley DJ. Oxidative quality and shelf life of meats. Meat Sci. 43: S111–S123 (1996)

    Article  CAS  Google Scholar 

  • Hać-Szymańczuk E, Cegiełka A, Karkos M, Gniewosz M, Piwowarek K. Evaluation of antioxidant and antimicrobial activity of oregano (Origanum vulgare L.) preparations during storage of low-pressure mechanically separated meat (BAADER meat) from chickens. Food Sci. Biotechnol. 28: 449–457 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91: 3C–14S (1991)

    Google Scholar 

  • Halliwell B, Gutteridge JMC. Lipid peroxidation: a radical chain reaction. 2nd ed., pp. 189–276. In: Free Radicals in Biology and Medicine. Clarendon Press, London (1989)

    Google Scholar 

  • Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1–85 (1990)

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119: 598 (1992). https://doi.org/10.1155/2016/5698931

    CAS  PubMed  Google Scholar 

  • Gutteridge JMC, Halliwell B. Mini-review: oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 502: 183–186 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Jacob RA, Burri BJ. Oxidative damage and defense. Am. J. Clin. Nutr. 63: 985S–990S (1996)

    Article  CAS  Google Scholar 

  • Jiang J, Xiong YL. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: a review. Meat Sci. 120: 107–117 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Johnson DR, Decker EA. The role of oxygen in lipid oxidation reactions: a review. Ann. Rev. Food Sci. Technol. 6: 171–190 (2015)

    Article  CAS  Google Scholar 

  • Jongberg S, Lund MN, Pattison DI, Skipsted LH, Davis MJ. Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components. Food Chem. 199: 36–41 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Karre L, Lopez K, Getty KJK. Natural antioxidants in meat and poultry products. Meat Sci. 94: 220–227 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH. Oxyradical reactions: from bond-dissociation energies to reduction potentials. FEBS Lett. 264: 165–167 (1990)

    Article  CAS  PubMed  Google Scholar 

  • Lee MT, Lin WC, Yu B, Lee TT. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals: a review. AJAS 30: 299–308 (2017)

    CAS  PubMed  Google Scholar 

  • Lee SH, Min D. Effects, quenching mechanisms, and kinetics of carotenoids in chlorophyll-sensitized photooxidation of soybean oil. J. Agric. Food Chem. 38: 1630–1634 (1990)

    Article  CAS  Google Scholar 

  • Lee SK, Tatiyaborworntham N, Grunwald EW, Richard MP. Myoglobin and hemoglobin-mediated lipid oxidation in washed muscle: observation on crosslinking, ferryl formation, porphyrin degradation, and hemin loss. Food Chem. 107: 258–263 (2015)

    Article  CAS  Google Scholar 

  • Li H, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237: 208–219 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Lanari MC, Schaefer DM. A review of dietary vitamin E supplementation for improvement of beef quality. J. Anim. Sci. 73: 3131–3140 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Lu JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med. 14(4): 840–860 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Lund MN, Heinonen M, Baron CP, Estévez M. Protein oxidation in muscle foods: a review. Mol. Nutr. Food Res. 55: 83–95 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Mancini RA, Hunt MC. Current research in meat color. Meat Sci. 71: 100–121 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Maqsood S, Benjakul S, Abushelaibi A, Alam A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: a detailed review. Compr. Rev. Food Sci. Food Saf. 13: 1125–1140 (2014)

    Article  CAS  Google Scholar 

  • Mariutti LRB, Bragagnolo N. Influence of salt on lipid oxidation in meat and seafood products: a review. Food Res. Int. 94: 90–100 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Mikhed Y, Daiber A, Steven S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int. J. Mol. Sci. 16: 14918–15953 (2015)

    Article  CAS  Google Scholar 

  • Min B, Ahn DU. Mechanism of lipid peroxidation in meat and meat products: a review. Food Sci. Biotechnol. 14(1): 152–163 (2005)

    CAS  Google Scholar 

  • Mottrram DS. Flavor formation in meat and meat products: a review. Food Chem. 62: 415–424 (1998)

    Article  Google Scholar 

  • Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: a review. Compr. Rev. Food Sci. Technol. 16: 96–123 (2017)

    Article  CAS  Google Scholar 

  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97: 55–74 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Polimeni L, Ben MD, Baratta F, Perri L, Albanese F, Pastori D, Violi F, Angelico F. Oxidative stress: new insights on the association of nonalcoholic fatty liver disease and atherosclerosis. World J. Hepatol. 7: 1325–1336 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci.38: 592–607 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 115: 5839–5848 (2018)

    Article  CAS  Google Scholar 

  • Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): a new class of SOD enzymes and SOD-like protein domains. J. Biol. Chem. 293: 4636–4643 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: a review. J. Funct. Foods 18: 820–897 (2015)

    Article  CAS  Google Scholar 

  • Shahidi F, Janitha PK, Wanasundara PD. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67–103 (1992)

    Article  CAS  PubMed  Google Scholar 

  • Sies H. On the history of oxidative stress: concept and some aspects of current development. Curr. Opin. Toxicol. 7: 122–126 (2018)

    Article  Google Scholar 

  • Sies H. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82: 291–295 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N. Potential applications of antioxidants: a review. J. Pharm. Res. 7: 828–835 (2013)

    CAS  Google Scholar 

  • Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 71: 40–56 (2015)

    Article  CAS  Google Scholar 

  • Smiddy M, Papkovskaia N, Papkovsky DB, Kerry JP. Use of oxygen sensors for the non-destructive measurement of the oxygen content in modified atmosphere and vacuum packs of cooked chicken patties; impact of oxygen content on lipid oxidation. Food Res. Int. 35: 577–584 (2002)

    Article  CAS  Google Scholar 

  • Sohaib M, Anjum FM, Sahar A, Arshad MS, Rahman UU, Imran A, Hussain S. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: a comprehensive review. Int. J. Food Prop. 20: 2581–2593 (2017)

    Article  CAS  Google Scholar 

  • Soladoye OP, Juarez ML, Aalhus JL, Shand P, Estavez M. Protein oxidation in processed meat: mechanisms and potential implications on human health. Compr. Rev. Food Sci. Technol. 14: 106–122 (2015)

    Article  CAS  Google Scholar 

  • Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid oxidation derived aldehydes and oxysterols between health and disease. Eur. J. Lipid Sci. Technol. (2019). https://doi.org/10.1002/ejlt.201700047

    Article  CAS  Google Scholar 

  • Suscan MK. Identifying and preventing off-flavors. Food Technol. 58(11): 36–40 (2004)

    Google Scholar 

  • Tang SZ, Kerry JP, Sheehan D, Buckley DJ. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem. 76: 45–51 (2002)

    Article  CAS  Google Scholar 

  • Torrico DD, Hutching S, Ha M, Bittner EP, Fuentes S, Warner RD, Dunshea FR. Novel techniques to understand consumer responses towards food products: a review with a focus on meat. Meat Sci. 144: 30–42 (2018)

    Article  PubMed  Google Scholar 

  • Valle LGD. Oxidative stress in aging: theoretical outcomes and clinical evidences in humans. Biomed. Aging Pathol. 1: 1–7 (2011)

    Article  CAS  Google Scholar 

  • Vieira SA, Zhang G, Decker EA. Biological implication of lipid oxidation products. J. Am. Oil Chem. Soc. 94: 339–351 (2017)

    Article  CAS  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochem. Biophys. Acta 1842: 1240–1247 (2014)

    CAS  PubMed  Google Scholar 

  • Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci. 78: 343–358 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Yin J, Zhang J, Richards MP. Factors affecting lipid oxidation due to pig and Turkey homolysate. J. Agric. Food Chem. 65: 8011–8017 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Zhang W, Lee EJ, Ma C, Ahn DU. Effects of diet, packaging and irradiation on protein oxidation, lipid oxidation and color of raw broiler thigh meat during refrigerated storage. Poult. Sci. 90: 1348–1357 (2011a)

    Article  CAS  Google Scholar 

  • Xiao S, Zhang WG, Lee EJ, Ma CW, Ahn DU. Lipid and protein oxidation of chicken breast rolls as affected by dietary oxidation levels and packaging. J. Food Sci. 76: C612–C617 (2011b)

    Article  CAS  PubMed  Google Scholar 

  • Xie J, VanAlstyne P, Uhlir A, Yang X. A review on rosemary as a natural antioxidation solution. Eur. J. Lipid Sci. Technol. 119: 1600439 (2017). https://doi.org/10.1002/ejlt.201600439

    Article  CAS  Google Scholar 

  • Yan LJ. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2: 165–169 (2017)

    Article  CAS  Google Scholar 

  • Yin J, Zhang W, Richards MP. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysates. Food Chem. 234: 230–235 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants 7: 66 (2018). https://doi.org/10.3390/antiox7050066

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0400302), and the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. IOW03721 is sponsored by Hatch Act and State of Iowa funds, and by the National Natural Science Foundation of China 31471602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Uk Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci Biotechnol 28, 1275–1285 (2019). https://doi.org/10.1007/s10068-019-00631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00631-7

Keywords

Navigation