Skip to main content

Advertisement

Log in

Parkinson’s disease: oxidative stress and therapeutic approaches

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder, caused by reduced levels of catecholamines and oxidative stress. Symptoms seen in the disease include tremor, rigidity, bradykinesia and postural disability. Oxidative stress plays a key role in neurodegeneration and motor abnormalities seen in PD. Altered levels of the protein caused by these changes lead to defective ubiquitin–proteasome pathway. Neurodegeneration seen in PD and Canavan disease has a common mechanism. Recent studies suggest that herbal medicines can improve molecular changes and motor functions seen in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223–236

    PubMed  Google Scholar 

  2. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31

    PubMed  CAS  Google Scholar 

  3. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N et al (1997) Oxidative DNA damage in the parkinsonian brain; a selective increase in 8-hydroxyguanine in substantia nigra? J Neurochem 69:1196–1203

    Article  PubMed  CAS  Google Scholar 

  4. Delaveau P, Salgado-Pineda P, Witjas T, Micallef-Roll J, Fakra E, Azulay JP, Blin O (2009) Dopaminergic modulation of amygdala activity during emotion recognition in patients with Parkinson disease. J Clin Psychopharmacol 29:548–554

    Article  PubMed  Google Scholar 

  5. Rajasankar S, Manivasagam T, Surendran S (2009) Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 454:11–15

    Article  PubMed  CAS  Google Scholar 

  6. Kim W, Erlandsen H, Surendran S, Stevens RC, Gamez A, Michols-Matalon K, Tyring SK, Matalon R (2004) Trends in enzyme therapy for phenylketonuria. Mol Ther 10:220–224

    Article  PubMed  CAS  Google Scholar 

  7. Höglinger GU, Carrard G, Michel PP, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Article  PubMed  CAS  Google Scholar 

  8. McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  PubMed  CAS  Google Scholar 

  9. Zimprich A, Biskup S, Leitner P, Lichtner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

  10. Orth M, Schapira AH (2002) Mitochondrial involvement in Parkinson’s disease. Neurochem Int 40:533–541

    Article  PubMed  CAS  Google Scholar 

  11. Gerlach M, Riederer P (2003) Current preclinical findings on substances against Parkinson’s disease. Nervenarzt 74:S2–S6

    Article  PubMed  Google Scholar 

  12. Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifl C, Hornykiewicz O (2008) Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlation. Neurology 70:1403–1410

    Article  PubMed  CAS  Google Scholar 

  13. Rajasankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S (2009) Withania somnifera improves antioxidants, catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    Article  PubMed  CAS  Google Scholar 

  14. Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    Article  PubMed  CAS  Google Scholar 

  15. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  PubMed  CAS  Google Scholar 

  16. Surendran S (2009) Upregulation of N-acetylaspartic acid alters inflammation, transcription and contractile associated protein levels in the stomach and smooth muscle contractility. Mol Biol Rep 36:201–206

    Article  PubMed  CAS  Google Scholar 

  17. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  18. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    PubMed  CAS  Google Scholar 

  20. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    PubMed  CAS  Google Scholar 

  21. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    Article  PubMed  CAS  Google Scholar 

  22. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  PubMed  CAS  Google Scholar 

  23. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: Implications in disease. Free Radic Biol Med 47:344–356

    Article  PubMed  CAS  Google Scholar 

  24. Surendran S, Matalon R, Tyring SK (2007) Neurochemical changes and therapeutical targets in phenylketonuria (PKU). In: Surendran S (ed) Neurochemistry of metabolic diseases-lysosomal storage diseases, phenylketonuria and Canavan disease. Transworld Research Network, India, pp 105–118

    Google Scholar 

  25. Gałecka E, Jacewicz R, Mrowicka M, Florkowski A, Gałecki P (2008) Antioxidative enzymes—structure, properties, functions. Pol Merkur Lekarski 25:266–268

    PubMed  Google Scholar 

  26. Martin HL, Teismann P (2009) Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J 23(10):3263–3272

    Article  PubMed  CAS  Google Scholar 

  27. Maker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36:589–593

    Article  PubMed  CAS  Google Scholar 

  28. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  29. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  PubMed  CAS  Google Scholar 

  30. Pearce PK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677

    Article  PubMed  CAS  Google Scholar 

  31. Sofic E, Lange KW, Jellinger K, Riederer KP (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  PubMed  CAS  Google Scholar 

  32. Cole NN, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314:2076–2089

    Article  PubMed  CAS  Google Scholar 

  33. Shavali S, Brown-Borg HM, Ebadi M, Porter J (2008) Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 439:125–128

    Article  PubMed  CAS  Google Scholar 

  34. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    Article  PubMed  CAS  Google Scholar 

  35. Muftuoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G, Ogüs H, Dalkara T, Ozer N (2004) Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 19:544–548

    Article  PubMed  Google Scholar 

  36. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    Article  PubMed  CAS  Google Scholar 

  37. Hoepken HH, Gispert S, Morales B, Wingerter O, Del Turco D, Mülsch A, Nussbaum RL, Müller K, Dröse S, Brandt T, Deller U, Wirth B, Kudin AP, Kunz WS, Auburger G (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401–411

    Article  PubMed  CAS  Google Scholar 

  38. Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA, Ottersen OP, Dawson TM, Dawson VL (2005) Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14:2063–2073

    Article  PubMed  CAS  Google Scholar 

  39. Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA 101:9103–9108

    Article  PubMed  CAS  Google Scholar 

  40. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847

    Article  PubMed  CAS  Google Scholar 

  41. Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Müller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Krüger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111

    Article  PubMed  CAS  Google Scholar 

  42. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  PubMed  CAS  Google Scholar 

  43. Penn AM, Roberts T, Hodder J, Allen PS, Zhu G, Martin WR (1995) Generalized mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 45:2097–2099

    PubMed  CAS  Google Scholar 

  44. Baik H-M, Choe BY, Lee H-K, Suh T-S, Son BC, Lee J-M (2002) Metabolic alterations in Parkinson’s disease after thalamotomy, as revealed by H MR spectroscopy. Korean J Radiol 3:180–188

    Article  PubMed  Google Scholar 

  45. Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187:97–104

    Article  PubMed  CAS  Google Scholar 

  46. Kingsbury DJ, Griffin TA, Colbert RA (2000) Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem 275:24156–24162

    Article  PubMed  CAS  Google Scholar 

  47. Lindå H, Hammarberg H, Piehl F, Khademi M, Olsson T (1999) Expression of MHC class I heavy chain and beta2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons. J Neuroimmunol 101:76–86

    Article  PubMed  Google Scholar 

  48. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    Article  PubMed  CAS  Google Scholar 

  49. Surendran S (2001) Possible role of fas antigen (CD 95) in human amniotic epithelial cell death: an in vitro study. Cell Biol Int 25:485–488

    Article  PubMed  CAS  Google Scholar 

  50. Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  PubMed  CAS  Google Scholar 

  51. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  PubMed  CAS  Google Scholar 

  52. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. Neuroreport 10:717–721

    Article  PubMed  CAS  Google Scholar 

  53. Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  PubMed  CAS  Google Scholar 

  54. McNaught KS, Björklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002) Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13:1437–1441

    Article  PubMed  CAS  Google Scholar 

  55. Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368

    Article  PubMed  CAS  Google Scholar 

  56. Giasson BI, Lee VM (2001) Parkin and the molecular pathways of Parkinson’s disease. Neuron 31:885–888

    Article  PubMed  CAS  Google Scholar 

  57. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    Article  PubMed  CAS  Google Scholar 

  58. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  59. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  60. von Coelln R, Dawson VL, Dawson TM (2004) Parkin-associated Parkinson’s disease. Cell Tissue Res 318:175–184

    Article  CAS  Google Scholar 

  61. Naoi M, Maruyama W, Doster P, Kohda K, Kaiya T (1996) A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci Lett 212:183–186

    Article  PubMed  CAS  Google Scholar 

  62. Naoi M, Maruyama W, Akao Y, Yi H (2002) Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicol Teratol 24:579–591

    Article  PubMed  CAS  Google Scholar 

  63. Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Wittig H, Madea B (1999) A systematic regional study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Sci Int 105:1–11

    Article  PubMed  CAS  Google Scholar 

  64. Musshoff F, Schmidt P, Dettmeyer R, Primer F, Jachau K, Madea B (2000) Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci Int 113:359–366

    Article  PubMed  CAS  Google Scholar 

  65. Toth BE, Homicsko K, Radnai B, Maruyama W, Demaria JE, Vecsernyes M, Fekete MIK, Fulop F, Naoi M, Freeman ME, Nagy GM (2001) Salsolinol is a putative endogenous neuro-intermediate lobe prolactin-releasing factor. J Neuroendocrinol 13:1042–1050

    Article  PubMed  CAS  Google Scholar 

  66. Naoi M, Maruyama W, Nagy GM (2004) Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicol 25:193–204

    Article  CAS  Google Scholar 

  67. Storch A, Kaftan A, Burkhard K, Schwartz J (2000) 1-Methyl-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism. Brain Res 855:67–75

    Article  PubMed  CAS  Google Scholar 

  68. Maruyama W, Abe T, Tohgi H, Dostert P, Naoi M (1996) A dopaminergic neurotoxin, (R)-N-methylsalsolinol increases in parkinsonian cerebrospinal fluid. Ann Neurol 40:119–122

    Article  PubMed  CAS  Google Scholar 

  69. Surendran S, Kumaresan G (2007) Neurochemical changes and therapeutic approaches in Canavan disease. In: Surendran S (ed) Neurochemistry of metabolic diseases-lysosomal storage diseases, phenylketonuria and Canavan disease. Research Signpost, India, pp 119–132

    Google Scholar 

  70. Surendran S (2005) Canavan disease: genomic interaction and metabolic levels. EXCLI J 4:77–86

    Google Scholar 

  71. Surendran S, Matalon R, Tyring SK (2006) Upregulation of aspartoacylase activity in the duodenum of obesity induced diabetes mouse: implications on diabetic neuropathy. Biochem Biophys Res Commun 345:973–975

    Article  PubMed  CAS  Google Scholar 

  72. Surendran S, Bamforth FJ, Chan A, Tyring SK, Goodman SI, Matalon R (2003) Mild elevation of N-acetylaspartic acid and macrocephaly: diagnostic problem. J Child Neurol 18:809–812

    Article  PubMed  Google Scholar 

  73. Surendran S (2007) Upregulation of aspartoacylase seen in diabetes is due to advanced glycation end-products. Med Hypotheses 68:926

    Article  PubMed  CAS  Google Scholar 

  74. Surendran S (2008) N-Acetyl aspartate induces nitric oxide to result neurodegeneration in Canavan disease. Biosci hypotheses 1:228–229

    Article  CAS  Google Scholar 

  75. Song YJ, Halliday GM, Holton JL, Lashley T, O’Sullivan SS, McCann H, Lees AJ, Ozawa T, Williams DR, Lockhart PJ, Revesz TR (2009) Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 68:1073–1083

    Article  PubMed  CAS  Google Scholar 

  76. Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436

    Article  PubMed  CAS  Google Scholar 

  77. Khan SA, Priyamvada S, Farooq N, Khan S, Khan MW, Yusufi AN (2009) Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res 59:254–262

    Article  PubMed  CAS  Google Scholar 

  78. Guo Q, Zhao BL, Li MF, Shen SR, Xin WJ (1996) Studies on protective mechanisms of four components of green tea polyphenols (GTP) against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304:210–222

    PubMed  CAS  Google Scholar 

  79. Guo Q, Zhao BL, Hou JW, Xin WJ (1999) ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23

    PubMed  CAS  Google Scholar 

  80. Zhao BL, Guo Q, Xin WJ (2001) Free radical scavenging by green tea polyphenols. Methods Enzymol 335:217–231

    Article  PubMed  CAS  Google Scholar 

  81. Nie GJ, Wei TT, Zhao BL (2001) Polyphenol protection of DNA against damage. Methods Enzymol 335:232–244

    Article  PubMed  CAS  Google Scholar 

  82. Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M (1998) Oral administration of (-) catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res 29:359–365

    Article  PubMed  CAS  Google Scholar 

  83. Yoneda T, Hiramatsu M, Skamoto N, Togasaki K, Komatsu M, Yamaguchi K (1995) Antioxidant effects of ‘‘b catechin’’. Biochem Mol Biol Int 35:995–1008

    PubMed  CAS  Google Scholar 

  84. Kurzer MS, Xu X (1997) Dietary phytoestrogens. Annu Rev Nutr 17:353–381

    Article  PubMed  CAS  Google Scholar 

  85. Chan WH, Yu JS (2000) Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J Cell Biochem 78:73–84

    Article  PubMed  CAS  Google Scholar 

  86. Johnson KL, Vaillant F, Lawen A (1996) Protein tyrosine kinase inhibitors prevent didemnin B-induced apoptosis in HL-60 cells. FEBS Lett 383:1–5

    Article  PubMed  CAS  Google Scholar 

  87. Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG (2002) Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 23:367–374

    Article  PubMed  CAS  Google Scholar 

  88. Schulz JB, Matthews RT, Muquit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64:936–939

    Article  PubMed  CAS  Google Scholar 

  89. Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, Matthews RT, Beal MF (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2:1017–1021

    Article  PubMed  CAS  Google Scholar 

  90. Masci A, Mastronicola D, Arese M, Piane M, De Amicis A, Blanck TJ, Chessa L, Sarti P (2008) Control of cell respiration by nitric oxide in ataxia telangiectasia lymphoblastoid cells. Biochim Biophys Acta 1777:66–73

    Article  PubMed  CAS  Google Scholar 

  91. Shults CW, Beal MF, Fontaine D, Nakano K, Haas RH (1998) Absorption, tolerability, and effects on mitochondrial activity of oral coenzyme Q10 in parkinsonian patients. Neurology 50:793–795

    PubMed  CAS  Google Scholar 

  92. Beal MF, Matthews RT, Tieleman A, Shults CW (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1, 2, 3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783:109–114

    Article  PubMed  CAS  Google Scholar 

  93. Ridet JL, Bensadoun JC, Deglon N, Aebischer P, Zurn AD (2006) Lentivirus-mediated expression of glutathione peroxidase: neuroprotection in murine models of Parkinson’s disease. Neurobiol Dis 21:29–34

    Article  PubMed  CAS  Google Scholar 

  94. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem 280:22530–22539

    Article  PubMed  CAS  Google Scholar 

  95. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of parkinsonism. Ann Neurol 44:S160–S166

    PubMed  CAS  Google Scholar 

  96. McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble coenzyme Q10. Toxicol Appl Pharmacol 201:21–31

    Article  PubMed  CAS  Google Scholar 

  97. Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DE Jr (2003) Coenzyme Q induces nigral mitochondrial uncoupling and prevents nigral cell loss in a primate model of Parkinson’s disease. Endocrinology 144:2757–2760

    Article  PubMed  CAS  Google Scholar 

  98. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL et al (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  99. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21:541–548

    Article  PubMed  CAS  Google Scholar 

  100. Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61:561–566

    Article  Google Scholar 

  101. Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    Article  PubMed  Google Scholar 

  102. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  103. Lu KT, Ko MC, Chen BY, Huang JC, Hsieh CW, Lee MC, Chiou RY, Wung BS, Peng CH, Yang YL (2008) Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem 56:6910–6913

    Article  PubMed  CAS  Google Scholar 

  104. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW et al (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508

    Article  PubMed  CAS  Google Scholar 

  105. Hely MA, Reid WG, Adena MA, Haliday GM, Morris JG (2008) The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 23:837–844

    Article  PubMed  Google Scholar 

  106. Rascol O, Goetz C, Koller W, Poewe W, Sampaio C (2002) Treatment interventions for Parkinson’s disease: an evidence based assessment. Lancet 359:1589–1598

    Article  PubMed  Google Scholar 

  107. Grosset D (2008) Dopamine agonists and therapy compliance. Neurol Sci 29:S375–S376

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Surendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surendran, S., Rajasankar, S. Parkinson’s disease: oxidative stress and therapeutic approaches. Neurol Sci 31, 531–540 (2010). https://doi.org/10.1007/s10072-010-0245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0245-1

Keywords

Navigation