Skip to main content
Log in

In vitro effects of Cyberknife-driven intermittent irradiation on glioblastoma cell lines

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Radiosurgery is used increasingly upon recurrence of high-grade gliomas to deliver a high dose of focused radiation to a defined target. The purpose of our study was to compare intermittent irradiation (IIR) by using a CyberKnife (CK) with continuous irradiation (CIR) by using a conventional linear accelerator (LINAC). A significant decrease in surviving fraction was observed after IIR irradiation compared with after CIR at a dose of 8 Gy. Three hours after irradiation, most of the DNA damage was repaired in U87. Slightly higher basal levels of Ku70/80 mRNA were found in U87 compared with A172, while radiation treatment induced only minor regulation of Ku70/80 and Rad51 transcription in either cell lines. IIR treatment using CK significantly decreased the survival in U87 and A172 compared with CIR. Although the two cell lines differed in DNA repair capability, the role of Ku70/80 and Rad51 in the cell line radiosensitivity seemed marginal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996

    Article  CAS  Google Scholar 

  2. Parvez T (2008) Present trend in the primary treatment of aggressive malignant glioma: glioblastoma multiforme. Technol Cancer Res Treat 7(3):241–248

    PubMed  Google Scholar 

  3. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R, Pizzolato G, Leyvraz S (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20:1375–1382

    Article  PubMed  CAS  Google Scholar 

  4. Luxton G, Petrovich Z, Jozsef G, Nedzi LA, Apuzzo ML (1993) Stereotactic radiosurgery: principles and comparison of treatment methods. Neurosurgery 32:241–259

    Article  PubMed  CAS  Google Scholar 

  5. Lipani JD, Jackson PS, Soltys SG, Sato K, Adler JR (2008) Survival following CyberKnife radiosurgery and hypofractionated radiotherapy for newly diagnosed glioblastoma multiforme. Technol Cancer Res Treat 7:249–255

    PubMed  Google Scholar 

  6. Nishizaki T, Saito K, Jimi Y, Harada N, Kajiwara K, Nomura S, Ishihara H, Yoshikawa K, Yoneda H, Suzuki M, Gibbs IC (2006) The role of cyberknife radiosurgery/radiotherapy for brain metastases of multiple or large-size tumors. Minim Invasive Neurosurg 49:203–209

    Article  PubMed  CAS  Google Scholar 

  7. Steel GG (1996) From targets to genes: a brief history of radiosensitivity. Phys Med Biol 41:205–222

    Article  PubMed  CAS  Google Scholar 

  8. Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K (2005) Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J Cell Biol 170:341–347

    Article  PubMed  CAS  Google Scholar 

  9. Collis SJ, DeWeese TL (2004) Enhanced radiation response through directed molecular targeting approaches. Cancer Metastasis Rev 23:277–292

    Article  PubMed  CAS  Google Scholar 

  10. Jackson SP, Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci 20:412–415

    Article  PubMed  CAS  Google Scholar 

  11. Short SC, Bourne S, Martindale C, Woodcock M, Jackson SP (2005) DNA damage responses at low radiation doses. Rad Res 164:292–302

    Article  CAS  Google Scholar 

  12. Price ME, McKelvey-Martin VJ, Robson T, Hirst DG, McKeown SR (2000) Induction and rejoining of DNA double-strand breaks in bladder tumor cells. Rad Res 153:788–794

    Article  CAS  Google Scholar 

  13. Olive PL, Wlodek D, Durand RE, Banath JP (1992) Factors influencing DNA migration from individual cells subject to gel electrophoresis. Exp Cell Res 198:259–267

    Article  PubMed  CAS  Google Scholar 

  14. Rutledge RG, Côté C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:e93

    Article  PubMed  CAS  Google Scholar 

  15. Scott SL, Gumerlock PH, Beckett L, Li Y, Goldberg Z (2004) Survival and cell cycle kinetics of human prostate cancer cell lines after single- and multifraction exposures to ionizing radiation. Int J Radiat Oncol Biol Phys 59:219–227

    Article  PubMed  CAS  Google Scholar 

  16. Short SC, Kelly J, Mayes CR, Woodcock M, Joiner MC (2001) Low-dose hypersensitivity after fractionated low-dose irradiation in vitro. Int J Radiat Biol 77:655–664

    Article  PubMed  CAS  Google Scholar 

  17. Mu X, Löfroth PO, Karlsson M, Zackrisson B (2003) The effect of fraction time in intensity modulated radiotherapy: theoretical and experimental evaluation of an optimisation problem. Radiother Oncol 68:181–187

    Article  PubMed  Google Scholar 

  18. Ogino H, Shibamoto Y, Sugie C, Ito M (2005) Biological effects of intermittent radiation in cultured tumor cells: influence of fraction number and dose per fraction. J Radiat Res (Tokyo) 46:401–406

    Article  Google Scholar 

  19. Benedict SH, Lin PS, Zwicker RD, Huang DT, Schmidt-Ullrich RK (1997) The biological effectiveness of intermittent irradiation as a function of overall treatment time: development of correction factors for linac-based stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 37:765–769

    Article  PubMed  CAS  Google Scholar 

  20. Haas-Kogan DA, Kogan SS, Yount G (1999) p53 function influences the effect of fractionated radiotherapy on glioblastoma tumors. Int J Radiat Oncol Biol Phys 43:399–403

    Article  PubMed  CAS  Google Scholar 

  21. Scott SL, Earle JD, Gumerlock PH (2003) Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Cancer Res 63:7190–7196

    PubMed  CAS  Google Scholar 

  22. Dahlberg WK, Azzam EI, Yu Y, Little JB (1999) Response of human tumor cells of varying radiosensitivity and radiocurability to fractionated irradiation. Cancer Res 59:5365–5369

    PubMed  CAS  Google Scholar 

  23. Otomo T, Hishii M, Arai H, Sato K, Sasai K (2004) Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res (Tokyo) 45:53–60

    Article  CAS  Google Scholar 

  24. Zhou PK, Sproston AR, Marples B, West CM, Margison GP, Hendry JH (1998) The radiosensitivity of human fibroblast cell lines correlates with residual levels of DNA double-strand breaks. Radiother Oncol 47:271–276

    Article  PubMed  CAS  Google Scholar 

  25. Boehringer-Wyss N, Clarkson SG, Allal AS (2002) No benefits of ultrafractionation in two head-and-neck cancer cell lines with different inherent radiosensitivity. Int J Radiat Oncol Biol Phys 52:1099–1103

    Article  PubMed  Google Scholar 

  26. Short SC, Martindale C, Bourne S, Brand G, Woodcock M, Johnston P (2007) DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol 9:404–411

    Article  PubMed  CAS  Google Scholar 

  27. Yoshikawa T, Kashino G, Ono K, Watanabe M (2009) Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J Radiat Res (Tokyo) 50:151–160

    Article  Google Scholar 

  28. Chang HW, Kim SY, Yi SL, Son SH, Song do Y, Moon SY, Kim JH, Choi EK, Ahn SD, Shin SS, Lee KK, Lee SW (2006) Expression of Ku80 correlates with sensitivities to radiation in cancer cell lines of the head and neck. Oral Oncol 42:979–986

    Article  PubMed  CAS  Google Scholar 

  29. Takashima Y, Sakuraba M, Koizumi T, Sakamoto H, Hayashi M, Honma M (2009) Dependence of DNA double strand break repair pathways on cell cycle phase in human lymphoblastoid cells. Environ Mol Mutagen 50(9):815–822

    Article  PubMed  CAS  Google Scholar 

  30. Vandersickel V, Mancini M, Slabbert J, Marras E, Thierens H, Perletti G, Vral A (2010) The radiosensitizing effect of Ku70/80 knockdown in MCF10A cells irradiated with X-rays and p(66) + Be(40) neutrons. Radiat Oncol 27:5–30

    Google Scholar 

  31. Nimura Y, Kawata T, Uzawa K, Okamura J, Liu C, Saito M, Shimada H, Seki N, Nakagawara A, Ito H, Ochiai T, Tanzawa H (2007) Silencing Ku80 using small interfering RNA enhanced radiation sensitivity in vitro and in vivo. Int J Oncol 30:1477–1484

    PubMed  CAS  Google Scholar 

  32. Friesland S, Kanter-Lewensohn L, Tell R, Munck-Wikland E, Lewensohn R, Nilsson A (2003) Expression of Ku86 confers favorable outcome of tonsillar carcinoma treated with radiotherapy. Head Neck 25:313–321

    Article  PubMed  Google Scholar 

  33. Lee SW, Cho KJ, Park JH, Kim SY, Nam SY, Lee BJ, Kim SB, Choi SH, Kim JH, Ahn SD, Shin SS, Choi EK, Yu E (2005) Expressions of Ku70 and DNA-PKcs as prognostic indicators of local control in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 62:1451–1457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Achille Bergantin (C.D.I., Milan, Italy), Emanuele Pignoli and Francesca Valvo (Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy) for excellent technical support with irradiations, Sara Guzzetti (Lab of Experimental Neurooncology) for p53 analysis, Ida Milanesi (Radiotherapy Unit) and Andrea Smith (U.O. Cerebrovascular Diseases) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Ciusani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canazza, A., De Grazia, U., Fumagalli, L. et al. In vitro effects of Cyberknife-driven intermittent irradiation on glioblastoma cell lines. Neurol Sci 32, 579–588 (2011). https://doi.org/10.1007/s10072-011-0485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0485-8

Keywords

Navigation