Skip to main content
Log in

Implicit–explicit numerical schemes for jump–diffusion processes

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We study the numerical approximation of solutions for parabolic integro-differential equations (PIDE). Similar models arise in option pricing, to generalize the Black–Scholes equation, when the processes which generate the underlying stock returns may contain both a continuous part and jumps. Due to the non-local nature of the integral term, unconditionally stable implicit difference schemes are not practically feasible. Here we propose using implicit-explicit (IMEX) Runge-Kutta methods for the time integration to solve the integral term explicitly, giving higher-order accuracy schemes under weak stability time-step restrictions. Numerical tests are presented to show the computational efficiency of the approximation.

Mathematics Subject Classification (1991): Primary: 65M12; Secondary: 35K55, 49L25

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Amadori, A.L.: Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differential Integral Equations 16, 787–811 (2003)

    MATH  MathSciNet  Google Scholar 

  • 2. Andersen, L., Andreasen, J.: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Derivatives Research 4, 231–262 (2000)

    Article  Google Scholar 

  • 3. Ascher, U., Ruuth, S., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependant partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • 4. Barndorff-Nielsen, O., Mikosch T., Resnick S.: Lévy processes. Theory and applications. Boston: Birkhäuser, Boston 2001

  • 5. Barndorff-Nielsen, O., Shephard, N.: Modeling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O.E. et al. (eds.): Lévy processes. Theory and applications. Boston: Birkhäuser, Boston 2001, pp. 283–318

  • 6. Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • 7. Black, F., Scholes, M.: The pricing of option and corporate liabilities. J. Political Economy 81, 637–659 (1973)

    Article  Google Scholar 

  • 8. Briani, M., La Chioma, C., Natalini, R.: Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math. 98, 607–646 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • 9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Berlin: Springer 1988

  • 10. Cont, R., Tankov, P.: Financial modelling with jump processes. Boca Raton, FL: Chapman & Hall/CRC 2004

  • 11. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • 12. Das, S., Foresi, S.: Exact solutions for bond and option prices with systematic jump risk. Rev. Derivatives Research 1, 7–24 (1996)

    Article  Google Scholar 

  • 13. d'Halluin, Y., Forsyth, P.A., Labahn, G.: A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • 14. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • 15. Eberlein, E., Raible, S.: Term structure models driven by general Lévy processes. Math. Finance 9, 31–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • 16. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  • 17. Hull, J., White, A.: The pricing of options with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  • 18. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • 19. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • 20. Lapeyre, B., Lamberton, D.: An introduction to stochastic calculus applied to finance. London: Chapman & Hall 1996

  • 21. Madan, D.B., Seneta, E.: The variance gamma model for share market returns. J. Business 63, 511–524 (1990)

    Article  Google Scholar 

  • 22. Madan, D., Milne, F.: Option pricing with variance gamma martingale components. Math. Finance 1, 39–56 (1991)

    Article  MATH  Google Scholar 

  • 23. Matache, A.M., Schwab, C., Wihler, T.P.: Fast numerical solution of parabolic integrodifferential equations with applications in finance. SIAM J. Sci. Comput. 27, 369–393 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • 24. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financial Econom. 3, 125–144 (1976)

    Article  Google Scholar 

  • 25. Page, F.H., Sanders, A.B.: A general derivation of the jump process option pricing formula. J. Financial Quant. Anal. 21, 437–446 (1986)

    Article  Google Scholar 

  • 26. Pareschi, L., Russo, G.: High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation. In: Hou, T.Y., Tadmor, E. (eds.): Hyperbolic problems: theory, numerics, applications. Berlin: Springer 2003, pp. 241–251

  • 27. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic system with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    Article  MathSciNet  Google Scholar 

  • 28. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff system of differential equations. In: Trigiante, D. (ed.): Recent trends in numerical analysis. Dedicated to the 65th birthday of Professor I. Galligani. (Advances in the Theory of Computational Mathematics 3), Huntington, NY: Nova Science Publishers 2001, pp. 269–288

  • 29. Randall, C., Tavella, D.: Pricing financial instruments: the finite difference method. New York: Wiley 2000

  • 30. Strikwerda, J.C.: Finite difference schemes and partial differential equations. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software 1989

  • 31. Verwer, J.G., Blom, J.G., Hundsdorfer, W.: An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math. 20, 191–209 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • 32. Yong, J., Zhou, X.Y.: Stochastic controls. Hamiltonian systems and HJB equations. (Applications of Mathematics 43) New York: Springer 1999

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briani, M., Natalini, R. & Russo, G. Implicit–explicit numerical schemes for jump–diffusion processes. Calcolo 44, 33–57 (2007). https://doi.org/10.1007/s10092-007-0128-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-007-0128-x

Keywords

Navigation