Skip to main content

Advertisement

Log in

The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Diclofenac sodium (Dc) was found to possess antibacterial activity against both drug-sensitive and drug-resistant clinical isolates of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Mycobacterium spp., in addition to its potent anti-inflammatory activity. The time-kill curve study indicates that this non-steroidal drug exhibits bactericidal activity against Listeria, E. coli, and M. tuberculosis. The antibacterial activity of Dc comes, in part, from its ability to inhibit the DNA synthesis of E. coli and L. monocytogenes. Dc could protect murine listeriosis, salmonellosis, and tuberculosis at doses ranged within its maximum recommended human or non-toxic ex-vivo dose. Dc possesses anti-plasmid activity and acts as a ‘helper compound’ in synergistic combination with streptomycin against E. coli and Mycobacterium or gentamicin against Listeria. This review focuses on the possible use of Dc, a non-antibiotic helper compound, in infections and inflammatory conditions, rationalized on the basis of the activities of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ray A, Rice LB (2004) Wildcatters welcome: the need for new antimicrobial agents. Therapy 1:1–5. doi:10.2217/14750708.1.1.1

    Article  Google Scholar 

  2. Chopra L, Hesse L, O’Neill AJ (2002) Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol 92:4S–15S. doi:10.1046/j.1365-2672.92.5s1.13.x

    Article  PubMed  Google Scholar 

  3. Finch R (2002) Bacterial resistance—the clinical challenge. Clin Microbiol Infect 8(Suppl 3):21–32. doi:10.1046/j.1469-0691.8.s.3.3.x

    Article  PubMed  Google Scholar 

  4. Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70. doi:10.1038/nrmicro727

    Article  PubMed  CAS  Google Scholar 

  5. Chan YY, Ong YM, Chua KL (2007) Synergistic interaction between phenothiazines and antimicrobial agents against Burkholderia pseudomallei. Antimicrob Agents Chemother 51:623–630. doi:10.1128/AAC.01033-06

    Article  PubMed  CAS  Google Scholar 

  6. Kristiansen JE, Hendricks O, Delvin T, Butterworth TS, Aagaard L, Christensen JB, Flores VC, Keyzer H (2007) Reversal of resistance in microorganisms by help of non-antibiotics. J Antimicrob Chemother 59:1271–1279. doi:10.1093/jac/dkm071

    Article  PubMed  CAS  Google Scholar 

  7. Molnár J (2006) The reversal of drug resistance from bacteria to cancer cells. Curr Drug Targets 7(7):789–791. doi:10.2174/138945006777709584

    Article  Google Scholar 

  8. Viveiros M, Jesus A, Brito M, Leandro C, Martins M, Ordway D, Molnár AM, Molnár J, Amaral L (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 49(8):3578–3582. doi:10.1128/AAC.49.8.3578-3582.2005

    Article  PubMed  CAS  Google Scholar 

  9. Kaatz GW, Moudgal VV, Seo SM, Kristiansen JE (2003) Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 47(2):719–726. doi:10.1128/AAC.47.2.719-726.2003

    Article  PubMed  CAS  Google Scholar 

  10. Kristiansen JE (1991) Antimicrobial activity of nonantibiotics. Am Soc Microbiol News 57(3):135–139

    Google Scholar 

  11. Kristiansen JE, Amaral L (1997) The potential management of resistant infections with non-antibiotics. J Antimicrob Chemother 40:319–327. doi:10.1093/jac/40.3.319

    Article  PubMed  CAS  Google Scholar 

  12. Amaral L, Lorian V (1991) Effects of chlorpromazine on the cell envelope proteins of Escherichia coli. Antimicrob Agents Chemother 35(9):1923–1924

    PubMed  CAS  Google Scholar 

  13. Viveiros M, Amaral L (2001) Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. Int J Antimicrob Agents 17(3):225–228. doi:10.1016/S0924-8579(00)00343-5

    Article  PubMed  CAS  Google Scholar 

  14. Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnár J, Martins M, Amaral L (2007) Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int J Antimicrob Agents 30(3):242–249. doi:10.1016/j.ijantimicag.2007.04.018

    Article  PubMed  CAS  Google Scholar 

  15. Amaral L, Martins M, Viveiros M (2007) Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother 59:1237–1246. doi:10.1093/jac/dkl500

    Article  PubMed  CAS  Google Scholar 

  16. Amaral L, Martins M, Viveiros M (2008) Enhanced killing of intracellular pathogenic bacteria by phenothiazines and the role of K+ efflux pumps of the bacterium and the killing macrophage. Anti-Infective Agents Med Chem 7(1):63–72. doi:10.2174/187152108783329807

    Article  Google Scholar 

  17. Dastidar SG, Saha PK, Sanyamat B, Chakrabarty AN (1976) Antibacterial activity of ambodryl and benadryl. J Appl Bacteriol 41:209–214

    PubMed  CAS  Google Scholar 

  18. Chattopadhyay D, Dastidar SG, Chakrabarty AN (1998) Antimicrobial properties of methdilazine and its synergism with antibiotics and some chemotherapeutic agents. Arzneimittelforschung 38:869–872

    Google Scholar 

  19. Chakrabarty AN, Acharya DP, Neogi DK, Dastidar SG (1989) Drug interaction of promethazine & other some non-conventional antimicrobial chemotherapeutic agents. Indian J Med Res 89:233–237

    PubMed  CAS  Google Scholar 

  20. Dastidar SG, Jairaj J, Mookerjee M, Chakrabarty AN (1997) Studies on antimicrobial effect of the antihistaminic phenothiazine trimeprazine tartrate. Acta Microbiol Immunol Hung 44:241–247

    PubMed  CAS  Google Scholar 

  21. Dash SK, Dastidar SG, Chakrabarty AN (1977) Antimicrobial activity of promazine hydrochloride. Indian J Exp Biol 15:324–326

    PubMed  CAS  Google Scholar 

  22. Dastidar SG, Mondal U, Niyogi S, Chakrabarty AN (1986) Antibacterial property of methyl-DOPA and development of cross-resistance in m-DOPA mutants. Indian J Med Res 84:142–147

    PubMed  CAS  Google Scholar 

  23. Dutta NK, Mazumdar K, Dastidar SG, Chakrabarty AN, Shirataki Y, Motohashi N (2005) In vitro and in vivo antimycobacterial activity of an antihypertensive agent methyl-L-DOPA. In Vivo 19:539–545

    PubMed  CAS  Google Scholar 

  24. Sarkar A, Kumar KA, Dutta NK, Chakraborty P, Dastidar SG (2003) Evaluation of in vitro and in vivo antibacterial activity of dobutamine hydrochloride. Indian J Med Microbiol 21(3):172–178

    PubMed  CAS  Google Scholar 

  25. Kumar KA, Ganguly K, Mazumdar K, Dutta NK, Dastidar SG, Chakrabarty AN (2003) Amlodipine: a cardiovascular drug with powerful antimicrobial property. Acta Microbiol Pol 52(3):285–292

    PubMed  CAS  Google Scholar 

  26. Mazumdar K, Ganguly K, Kumar KA, Dutta NK, Chakrabarty AN, Dastidar SG (2003) Antimicrobial potentiality of a new non-antibiotic: the cardiovascular drug oxyfedrine hydrochloride. Microbiol Res 158:259–264. doi:10.1078/0944-5013-00204

    Article  PubMed  CAS  Google Scholar 

  27. Manna KK, Dastidar SG (1984) The anti-hypertensive drug propranolol hydrochloride (carditap): its anti-bacterial property. In: Proceedings of the 6th National Congress of the Indian Association of Medical Microbiologists (IAMM), pp 137-141

  28. Karak P, Kumar KA, Mazumdar K, Mookerjee M, Dastidar SG (2003) Antibacterial potential of an antispasmodic drug dicyclomine hydrochloride. Indian J Med Res 118:192–196

    PubMed  CAS  Google Scholar 

  29. Karaka P, Kumar KA, Basu LR, Dasgupta A, Ray R, Dastidar SG (2004) Experimental analysis of antimicrobial action of dicyclomine hydrochloride. Biol Pharm Bull 27(12):2010–2013. doi:10.1248/bpb.27.2010

    Article  PubMed  CAS  Google Scholar 

  30. Dastidar SG, Chaudhury A, Annadurai S, Roy S, Mookerjee M, Chakrabarty AN (1995) In vitro and in vivo antimicrobial action of fluphenazine. J Chemother 7:201–206

    PubMed  CAS  Google Scholar 

  31. Radhakrishnan V, Ganguly K, Ganguly M, Dastidar SG, Chakrabarty AN (1999) Potentiality of tricyclic compound thioridazine as an effective antibacterial and antiplasmid agent. Indian J Exp Biol 37:671–675

    PubMed  CAS  Google Scholar 

  32. Bourlioux P, Moreaux JM, Su WJ, Boureau H (1992) In vitro antimicrobial activity of 18 phenothiazine derivatives: structure–activity relationship. APMIS Suppl 30:40–43

    PubMed  CAS  Google Scholar 

  33. Martins M, Schelz Z, Martins A, Molnár J, Hajös G, Riedl Z, Viveiros M, Yalcin I, Aki-Sener E, Amaral L (2007) In vitro and ex vivo activity of thioridazine derivatives against Mycobacterium tuberculosis. Int J Antimicrob Agents 29:338–340. doi:10.1016/j.ijantimicag.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  34. Martins M, Viveiros M, Kristiansen JE, Molnár J, Amaral L (2007) The curative activity of thioridazine on mice infected with Mycobacterium tuberculosis. In Vivo 21(5):771–775

    PubMed  CAS  Google Scholar 

  35. Annadurai S, Basu S, Ray S, Dastidar SG, Chakrabarty AN (1998) Antibacterial activity of the antiinflammatory agent diclofenac sodium. Indian J Exp Biol 36:86–90

    PubMed  CAS  Google Scholar 

  36. Dutta NK, Mazumdar K, Baek MW, Kim DJ, Na YR, Park SH, Lee HK, Lee BH, Park JH (2008) In vitro efficacy of diclofenac against Listeria monocytogenes. Eur J Clin Microbiol Infect Dis 27(4):315–319. doi:10.1007/s10096-007-0439-5

    Article  PubMed  CAS  Google Scholar 

  37. Dutta NK, Mazumdar K, Seok SH, Park JH (2008) The anti-inflammatory drug Diclofenac retains anti-listerial activity in vivo. Lett Appl Microbiol 47:106–111. doi:10.1111/j.1472-765X.2008.02391.x

    Article  PubMed  CAS  Google Scholar 

  38. Bender AB, Kristiansen JE (1999) Antimicrobial effects of anesthetics and analgesics. Ugeskr Laeger 161(42):5814–5817

    PubMed  CAS  Google Scholar 

  39. Wang WH, Wong WM, Dailidiene D, Berg DE, Gu Q, Lai KC, Lam SK, Wong BC (2003) Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility to antimicrobial agents. Gut 52:490–495. doi:10.1136/gut.52.4.490

    Article  PubMed  CAS  Google Scholar 

  40. Crowle AJ, Douvas GS, May MH (1992) Chlorpromazine: a drug potentially useful for treating mycobacterial infections. Chemotherapy 38:410–419

    Article  PubMed  CAS  Google Scholar 

  41. Wainwright M, Amaral L (2005) The phenothiazinium chromophore and the evolution of antimalarial drugs. Trop Med Int Health 10:501–511. doi:10.1111/j.1365-3156.2005.01417.x

    Article  PubMed  CAS  Google Scholar 

  42. Chattopadhyay D, Dastidar SG, Chakrabarty AN (1987) Determination of in vitro activity of methdilazine, an antihistamine, and its synergism with aminoglycoside antibiotics. Indian J Med Microbiol 5:171–177

    Google Scholar 

  43. Ray S, Chattopadhyay D, Dastidar SG, Chakrabarty AN (1990) Studies on synergism between penicillins and ambodryl (bromodiphenhydramine HCl), an antihistamine with antimicrobial property. Indian J Exp Biol 28:253–258

    PubMed  CAS  Google Scholar 

  44. Dastidar SG, Chakraborty P, Mookerjee M, Ganguly M, Chakrabarty AN (1994) Studies on the existence of synergism between different antibiotics and a phenothiazine tranquilizer, promazine, possessing antimicrobial property. Acta Microbiol Immunol Hung 41(1):41–49

    PubMed  CAS  Google Scholar 

  45. Gunics G, Motohashi N, Amaral L, Farkas S, Molnár J (2000) Interaction between antibiotics and non-conventional antibiotics on bacteria. Int J Antimicrob Agents 14(3):239–242. doi:10.1016/S0924-8579(00)00131-X

    Article  PubMed  CAS  Google Scholar 

  46. Molnár J, Haszon I, Bodrogi T, Martonyi E, Turi S (1990) Synergistic effect of promethazine with gentamycin in frequently recurring pyelonephritis. Int J Urol Nephrol 22(5):405–411. doi:10.1007/BF02549770

    Article  Google Scholar 

  47. Amaral L, Kristiansen JE, Lorian V (1992) Synergic effect of chlorpromazine on the activity of some antibiotics. J Antimicrob Chemother 30:556–558. doi:10.1093/jac/30.4.556

    Article  PubMed  CAS  Google Scholar 

  48. Viveiros M, Amaral L (2001) Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. Int J Antimicrob Agents 17:225–228. doi:10.1016/S0924-8579(00)00343-5

    Article  PubMed  CAS  Google Scholar 

  49. Dutta NK, Mazumdar K, Dastidar SG, Park JH (2007) Activity of diclofenac used alone and in combination with streptomycin against Mycobacterium tuberculosis in mice. Int J Antimicrob Agents 30(4):336–340. doi:10.1016/j.ijantimicag.2007.04.016

    Article  PubMed  CAS  Google Scholar 

  50. Kumar KA, Mazumdar K, Dutta NK, Karak P, Dastidar SG, Ray R (2004) Evaluation of synergism between the aminoglycoside antibiotic streptomycin and the cardiovascular agent amlodipine. Biol Pharm Bull 27(7):1116–1120. doi:10.1248/bpb.27.1116

    Article  CAS  Google Scholar 

  51. Mazumdar K, Dutta NK, Kumar KA, Dastidar SG (2005) In vitro and in vivo synergism between tetracycline and the cardiovascular agent oxyfedrine HCl against common bacterial strains. Biol Pharm Bull 28(4):713–717. doi:10.1248/bpb.28.713

    Article  PubMed  CAS  Google Scholar 

  52. Chakrabarty AN, Mookerjee M, Dastidar SG (2000) Screening for anti-HIV drugs that can combine virucidal and virustatic activities synergistically. Int J Antimicrob Agents 14:215–220. doi:10.1016/S0924-8579(99)00158-2

    Article  PubMed  CAS  Google Scholar 

  53. Guha Thakurta A, Mandal SK, Ganguly K, Dastidar SG, Chakrabarty AN (2000) A new powerful antibacterial synergistic combination of trimethoprim and trimeprazine. Acta Microbiol Immunol Hung 47:21–28

    PubMed  CAS  Google Scholar 

  54. Rani Basu L, Mazumdar K, Dutta NK, Karak P, Dastidar SG (2005) Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol Res 160:95–100. doi:10.1016/j.micres.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  55. Amaral L, Kristiansen JE, Viveiros M, Atouguia J (2001) Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J Antimicrob Chemother 47:505–511. doi:10.1093/jac/47.5.505

    Article  PubMed  CAS  Google Scholar 

  56. Amaral L, Kristiansen JE (2000) Phenothiazines: an alternative to conventional therapy for the initial management of suspected multidrug resistant tuberculosis. A call for studies. Int J Antimicrob Agents 14:173–176. doi:10.1016/S0924-8579(99)00153-3

    Article  PubMed  CAS  Google Scholar 

  57. Mazumdar K, Dutta NK, Dastidar SG, Motohashi N, Shirataki Y (2006) Diclofenac in the management of E. coli urinary tract infections. In Vivo 20(5):613–619

    PubMed  CAS  Google Scholar 

  58. Dutta NK, Kumar KA, Mazumdar K, Dastidar SG (2004) In vitro and in vivo antimycobacterial activity of antiinflammatory drug, diclofenac sodium. Indian J Exp Biol 42:922–927

    PubMed  CAS  Google Scholar 

  59. Dutta NK, Dastidar SG, Kumar A, Mazumdar K, Ray R, Chakrabarty AN (2004) Antimycobacterial activity of the antiinflammatory agent diclofenac sodium, and its synergism with streptomycin. Braz J Microbiol 35:316–323. doi:10.1590/S1517-83822004000300009

    Article  CAS  Google Scholar 

  60. Dastidar SG, Ganguly K, Chaudhuri K, Chakrabarty AN (2000) The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. Int J Antimicrob Agents 14:249–251. doi:10.1016/S0924-8579(99)00159-4

    Article  PubMed  CAS  Google Scholar 

  61. Theodorou A, Demertzis MA, Kovala-Demertzi D, Lioliou EE, Pantazaki AA, Kyriakidis DA (1999) Copper(II) complexes of diclofenac: spectroscopic studies and DNA strand breakage. BioMetals 12(2):167–172. doi:10.1023/A:1009246122577

    Article  CAS  Google Scholar 

  62. Ratnakar P, Murthy PS (1993) Trifluoperazine inhibits the incorporation of labelled precursors into lipids, proteins and DNA of Mycobacterium tuberculosis H37Rv. FEMS Microbiol Lett 110(3):291–294. doi:10.1111/j.1574-6968.1993.tb06337.x

    Article  PubMed  CAS  Google Scholar 

  63. Park JH, Park YH, Seok SH, Cho SA, Kim DJ, Lee HY, Kim SH, Park JH (2004) Suppurative gastritis in BALB/c mice infected with Listeria monocytogenes via the intragastric route. J Comp Pathol 130:130–136. doi:10.1016/j.jcpa.2003.10.001

    Article  PubMed  Google Scholar 

  64. Park JH, Kim DJ, Park YH, Seok SH, Cho SA, Baek MW, Lee HY, Park JH (2004) Characteristics of the gastritis induced by Listeria monocytogenes in mice: microbiology, histopathology, and mRNA expression of inflammatory mediators with time course of infection. Microb Pathog 37:87–94. doi:10.1016/j.micpath.2004.05.002

    Article  PubMed  CAS  Google Scholar 

  65. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee BH, Kang PD, Kim YS, Park JH (2005) Potential antimicrobial effects of human lactoferrin against oral infection with Listeria monocytogenes in mice. J Med Microbiol 54:1049–1054. doi:10.1099/jmm.0.45918-0

    Article  PubMed  CAS  Google Scholar 

  66. Ravel G, Christ M, Horand F, Descotes J (2004) Cytokine release does not improve the sensitivity and specificity of the direct popliteal lymph node assay. Toxicology 200:247–254. doi:10.1016/j.tox.2004.03.010

    Article  PubMed  CAS  Google Scholar 

  67. Sano C, Shimizu T, Sato K, Kawauchi H, Kawahara S, Tomioka H (1999) Therapeutic effects of benzoxazinorifamycin krm-1648 administered alone or in combination with a half-sized secretory leukocyte protease inhibitor or the nonsteroidal anti-inflammatory drug diclofenac sodium against Mycobacterium avium complex infection in mice. Antimicrob Agents Chemother 43:360–364

    PubMed  CAS  Google Scholar 

  68. Tsuboi I, Tanaka H, Nakao M, Shichijo S, Itoh K (1995) Nonsteroidal anti-inflammatory drugs differentially regulate cytokine production in human lymphocytes: up-regulation of TNF, IFN-gamma and IL-2, in contrast to down-regulation of IL-6 production. Cytokine 7:372–379. doi:10.1006/cyto.1995.0047

    Article  PubMed  CAS  Google Scholar 

  69. Lewis AJ, Furst DW (1987) Nonsteroidal anti-inflammatory drugs: mechanisms and clinical use. Marcel Dekker, New York

    Google Scholar 

  70. Sriram D, Yogeeswari P, Devakaram RV (2006) Synthesis, in vitro and in vivo antimycobacterial activities of diclofenac acid hydrazones and amides. Bioorg Med Chem 14:3113–3118. doi:10.1016/j.bmc.2005.12.042

    Article  PubMed  CAS  Google Scholar 

  71. Goodman GA (2001) NSAIDs. In: Hardman JH, Limbird LE, Goodman GA (eds) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th edn. . Vols I and II. McGraw-Hill, New York, pp 687–731

  72. Shepherd WF, Fsadni MG, Raj PS (1998) A clinical evaluation of diclofenac-gentamicin combination eye drops in the control of inflammation after cataract surgery. Diclofenac-Gentamicin versus Gentamicin Study Group. Ocul Immunol Inflamm 6(1):13–18. doi:10.1076/ocii.6.1.13.8083

    Article  PubMed  CAS  Google Scholar 

  73. Brater DC (1986) Drug–drug and drug–disease interactions with nonsteroidal anti-inflammatory drugs. Am J Med 80(Suppl 1A):62–77

    PubMed  CAS  Google Scholar 

  74. Kawase M, Motohashi N (2003) New multidrug resistance reversal agents. Curr Drug Targets 4(1):31–43. doi:10.2174/1389450033347064

    Article  PubMed  CAS  Google Scholar 

  75. Molnár J, Földeák S, Nakamura MJ, Rausch H, Domonkos K, Szabó M (1992) Antiplasmid activity: loss of bacterial resistance to antibiotics. APMIS Suppl 30:24–31

    PubMed  Google Scholar 

  76. Motohashi N, Kawase M, Saito S, Miskolci C, Berek L, Molnár J (1999) Plasmid elimination and immunomodulation by 3-benzazepines in vitro. Anticancer Res 19(6B):5075–5078

    PubMed  CAS  Google Scholar 

  77. Martins M, Dastidar SG, Fanning S, Kristiansen JE, Molnár J, Pagès JM, Schelz Z, Spengler G, Viveiros M, Amaral L (2008) Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents 31:198–208. doi:10.1016/j.ijantimicag.2007.10.025

    Article  PubMed  CAS  Google Scholar 

  78. Dutta NK, Mazumdar K, Park JH (2009) In vitro synergistic effect of gentamicin with the anti-inflammatory agent diclofenac against Listeria monocytogenes. Lett Appl Microbiol. doi:10.1111/j.1472-765X.2009.02588.x

Download references

Acknowledgment

N. K. Dutta was supported by a fellowship by the Tulane Research Enhancement Fund.

Transparency declarations

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Dutta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(GIF 160 kb)

High resolution image file (TIFF 79.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazumdar, K., Dastidar, S.G., Park, J.H. et al. The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 28, 881–891 (2009). https://doi.org/10.1007/s10096-009-0739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-009-0739-z

Keywords

Navigation