Skip to main content

Advertisement

Log in

Application of Legionella pneumophila-specific quantitative real-time PCR combined with direct amplification and sequence-based typing in the diagnosis and epidemiological investigation of Legionnaires’ disease

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The detection of Legionella pneumophila DNA in clinical specimens using quantitative real-time polymerase chain reaction (qPCR) combined with direct sequence-based typing (SBT) offers rapid confirmation and timely intervention in the investigation of cases of Legionnaires’ disease (LD). We assessed the utility of a specific L. pneumophila qPCR assay targeting the macrophage infectivity potentiator (mip) gene and internal process control with three clinical specimen types from confirmed LD cases. The assay was completely specific for L. pneumophila, as demonstrated by positive results for 39/39 strains from all subspecies and 16 serogroups. No cross-reaction was observed with any of the 54 Legionella non-pneumophila (0/69 strains) or 21 non-Legionella (0/58 strains). All L. pneumophila culture-positive respiratory samples (81/81) were qPCR-positive. Of 80 culture-negative samples tested, 47 (58.8%) were qPCR-positive and none were inhibitory. PCR was significantly more sensitive than culture for samples taken ≤2 days of hospitalisation (94.7% vs. 79.6%), with the difference being even more marked for samples taken between 3 and 14 days (79.3% vs. 47.8%). Overall, the sensitivity of the qPCR was ∼30% greater than that of culture and direct typing on culture-negative PCR-positive samples resulted in full 7-allele profiles from 23/46, 5 to 6 alleles from 8/46 and ≥1 allele from 43/46 strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Centre for Disease Prevention and Control (ECDC) (2011) Legionnaires’ disease in Europe 2009. ECDC, Stockholm, Sweden

    Google Scholar 

  2. Helbig JH, Uldum SA, Bernander S, Lück PC, Wewalka G, Abraham B et al (2003) Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-associated, and nosocomial Legionnaires’ disease. J Clin Microbiol 41:838–840

    Article  PubMed  Google Scholar 

  3. Birtles RJ, Harrison TG, Samuel D, Taylor AG (1990) Evaluation of urinary antigen ELISA for diagnosing Legionella pneumophila serogroup 1 infection. J Clin Pathol 43:685–690

    Article  PubMed  CAS  Google Scholar 

  4. Benin AL, Benson RF, Besser RE (2002) Trends in legionnaires disease, 1980–1998: declining mortality and new patterns of diagnosis. Clin Infect Dis 35:1039–1046

    Article  PubMed  Google Scholar 

  5. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  6. Maurin M, Hammer L, Gestin B, Timsit JF, Rogeaux O, Delavena F et al (2010) Quantitative real-time PCR tests for diagnostic and prognostic purposes in cases of legionellosis. Clin Microbiol Infect 16:379–384

    Article  PubMed  CAS  Google Scholar 

  7. Zarogoulidis P, Alexandropoulou I, Romanidou G, Konstasntinidis TG, Terzi E, Saridou S et al (2011) Community-acquired pneumonia due to Legionella pneumophila, the utility of PCR, and a review of the antibiotics used. Int J Gen Med 4:15–19

    PubMed  Google Scholar 

  8. Mérault N, Rusniok C, Jarraud S, Gomez-Valero L, Cazalet C, Marin M et al (2011) Specific real-time PCR for simultaneous detection and identification of Legionella pneumophila serogroup 1 in water and clinical samples. Appl Environ Microbiol 77:1708–1717

    Article  PubMed  Google Scholar 

  9. Yang G, Benson R, Pelish T, Brown E, Winchell JM, Fields B (2010) Dual detection of Legionella pneumophila and Legionella species by real-time PCR targeting the 23S-5S rRNA gene spacer region. Clin Microbiol Infect 16:255–261

    Article  PubMed  CAS  Google Scholar 

  10. Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    Article  PubMed  CAS  Google Scholar 

  11. Gaia V, Fry NK, Harrison TG, Peduzzi R (2003) Sequence-based typing of Legionella pneumophila serogroup 1 offers the potential for true portability in legionellosis outbreak investigation. J Clin Microbiol 41:2932–2939

    Article  PubMed  CAS  Google Scholar 

  12. Gaia V, Fry NK, Afshar B, Lück PC, Meugnier H, Etienne J et al (2005) Consensus sequence-based scheme for epidemiological typing of clinical and environmental isolates of Legionella pneumophila. J Clin Microbiol 43:2047–2052

    Article  PubMed  Google Scholar 

  13. Ratzow S, Gaia V, Helbig JH, Fry NK, Lück PC (2007) Addition of neuA, the gene encoding N-acylneuraminate cytidylyl transferase, increases the discriminatory ability of the consensus sequence-based scheme for typing Legionella pneumophila serogroup 1 strains. J Clin Microbiol 45:1965–1968

    Article  PubMed  CAS  Google Scholar 

  14. Fry NK, Afshar B, Wewalka G, Harrison TG (2006) Epidemiological typing of Legionella pneumophila in the absence of isolates. In: Cianciotto N, Abu Kwaik Y, Edelstein PH, Fields BS, Geary DF, Harrison TG, Joseph CA, Ratcliff RM, Stout JE, Swanson MS (eds) Legionella: state of the art 30 years after its recognition. ASM Press, Washington DC, pp 152–155

    Google Scholar 

  15. Ginevra C, Lopez M, Forey F, Reyrolle M, Meugnier H, Vandenesch F et al (2009) Evaluation of a nested-PCR-derived sequence-based typing method applied directly to respiratory samples from patients with Legionnaires’ disease. J Clin Microbiol 47:981–987

    Article  PubMed  CAS  Google Scholar 

  16. Coscollá M, González-Candelas F (2009) Direct sequencing of Legionella pneumophila from respiratory samples for sequence-based typing analysis. J Clin Microbiol 47:2901–2905

    Article  PubMed  Google Scholar 

  17. Harrison TG, Taylor AG (1988) A laboratory manual for Legionella. John Wiley and Sons, Chichester, UK

    Google Scholar 

  18. Helbig JH, Lück PC, Knirel YA, Witzleb W, Zähringer U (1995) Molecular characterization of a virulence-associated epitope on the lipopolysaccharide of Legionella pneumophila serogroup 1. Epidemiol Infect 115:71–78

    Article  PubMed  CAS  Google Scholar 

  19. Helbig JH, Kurtz JB, Castellani-Pastoris M, Pelaz C, Lück PC (1997) Antigenic lipopolysaccharide components of Legionella pneumophila recognized by monoclonal antibodies: possibilities and limitations for division of the species into serogroups. J Clin Microbiol 35:2841–2845

    PubMed  CAS  Google Scholar 

  20. Fry NK, Tzivra O, Li YT, McNiff A, Doshi N, Maple PAC et al (2004) Laboratory diagnosis of pertussis infections: the role of PCR and serology. J Med Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  21. Lane DJ (1991) 16/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, UK, pp 115–175

    Google Scholar 

  22. Cadieux N, Lebel P, Brousseau R (1993) Use of a triplex polymerase chain reaction for the detection and differentiation of Mycoplasma pneumoniae and Mycoplasma genitalium in the presence of human DNA. J Gen Microbiol 139:2431–2437

    Article  PubMed  CAS  Google Scholar 

  23. Hussain M, Melegaro A, Pebody RG, George R, Edmunds WJ, Talukdar R et al (2005) A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiol Infect 133:891–898

    Article  PubMed  CAS  Google Scholar 

  24. Fry NK, Alexiou-Daniel S, Bangsborg JM, Bernander S, Castellani Pastoris M, Etienne J et al (1999) A multicenter evaluation of genotypic methods for the epidemiologic typing of Legionella pneumophila serogroup 1: results of a pan-European study. Clin Microbiol Infect 5:462–477

    Article  PubMed  Google Scholar 

  25. Fry NK, Bangsborg JM, Bernander S, Etienne J, Forsblom B, Gaia V et al (2000) Assessment of intercentre reproducibility and epidemiological concordance of Legionella pneumophila serogroup 1 genotyping by amplified fragment length polymorphism analysis. Eur J Clin Microbiol Infect Dis 19:773–780

    Article  PubMed  CAS  Google Scholar 

  26. Fry NK, Bangsborg JM, Bergmans A, Bernander S, Etienne J, Franzin L et al (2002) Designation of the European Working Group on Legionella Infection (EWGLI) amplified fragment length polymorphism types of Legionella pneumophila serogroup 1 and results of intercentre proficiency testing using a standard protocol. Eur J Clin Microbiol Infect Dis 21:722–728

    Article  PubMed  CAS  Google Scholar 

  27. Brenner DJ, Steigerwalt AG, Epple P, Bibb WF, McKinney RM, Starnes RW et al (1988) Legionella pneumophila serogroup Lansing 3 isolated from a patient with fatal pneumonia, and descriptions of L. pneumophila subsp. pneumophila subsp. nov., L. pneumophila subsp. fraseri subsp. nov., and L. pneumophila subsp. pascullei subsp. nov. J Clin Microbiol 26:1695–1703

    PubMed  CAS  Google Scholar 

  28. Benson RF, Thacker WL, Daneshvar MI, Brenner DJ (1996) Legionella waltersii sp. nov. and an unnamed Legionella genomospecies isolated from water in Australia. Int J Syst Bacteriol 46:631–634

    Article  PubMed  CAS  Google Scholar 

  29. Edelstein PH, Edelstein MA, Shephard LJ, Ward KW, Ratcliff RM (2011) Legionella steelei sp. nov. isolated from human respiratory specimens in California and South Australia. Int J Syst Evol Microbiol (in press). doi:10.1099/ijs.0.035709-0

  30. Yang G, Benson RF, Ratcliff R, Brown EW, Steigerwalt AG, Thacker LW et al (2011) Legionella nagasakiensis sp. nov., isolated from water samples in Japan and Australia and from a patient with pneumonia in the United States. Int J Syst Evol Microbiol (in press). doi:10.1099/ijs.0.027193-0

  31. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  32. Fry NK, Afshar B, Bellamy W, Underwood AP, Ratcliff RM, Harrison TG (2006) Online identification of Legionella species by DNA sequence analysis: the macrophage infectivity potentiator gene as an example. In: Cianciotto N, Abu Kwaik Y, Edelstein PH, Fields BS, Geary DF, Harrison TG, Joseph CA, Ratcliff RM, Stout JE, Swanson MS (eds) Legionella: state of the art 30 years after its recognition. ASM Press, Washington DC, pp 156–158

    Google Scholar 

  33. Ratcliff RM, Lanser JA, Manning PA, Heuzenroeder MW (1998) Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol 36:1560–1567

    PubMed  CAS  Google Scholar 

  34. Fry NK, Duncan J, Wagner K, Tzivra O, Doshi N, Litt DJ et al (2009) Role of PCR in the diagnosis of pertussis infection in infants: 5 years’ experience of provision of a same-day real-time PCR service in England and Wales from 2002 to 2007. J Med Microbiol 58:1023–1029

    Article  PubMed  CAS  Google Scholar 

  35. Finney DJ, Stevens WL (1948) A table for the calculation of working probits and weights in probit analysis. Biometrika 35:191–201

    PubMed  CAS  Google Scholar 

  36. Burd EM (2010) Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23:550–576

    Article  PubMed  CAS  Google Scholar 

  37. Lim WS, Baudouin SV, George RC, Hill AT, Jamieson C, Le Jeune I et al (2009) BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Thorax 64(S3):iii1–iii55

    Article  PubMed  Google Scholar 

  38. Dournon E (1988) Isolation of legionellae from clinical specimens. In: Harrison TG, Taylor AG (eds) A laboratory manual for Legionella. John Wiley and Sons, Chichester, UK, pp 13–30

    Google Scholar 

  39. Murdoch DR (2003) Diagnosis of Legionella infection. Clin Infect Dis 36:64–69

    Article  PubMed  Google Scholar 

  40. Lindsay DS, Abraham WH, Fallon RJ (1994) Detection of mip gene by PCR for diagnosis of Legionnaires’ disease. J Clin Microbiol 32:3068–3069

    PubMed  CAS  Google Scholar 

  41. Alexiou-Daniel S, Stylianakis A, Papoutsi A, Zorbas I, Papa A, Lambropoulos AF et al (1998) Application of polymerase chain reaction for detection of Legionella pneumophila in serum samples. Clin Microbiol Infect 4:144–148

    Article  PubMed  CAS  Google Scholar 

  42. van de Veerdonk FL, de Jager CPC, Schellekens JJA, Huijsmans CJJ, Beaumont F, Hermans MHA et al (2009) Legionella pneumophila DNA in serum samples during Legionnaires’ disease in relation to C-reactive protein levels. Eur J Clin Microbiol Infect Dis 28:371–376

    Article  PubMed  CAS  Google Scholar 

  43. Murdoch DR, Walford EJ, Jennings LC, Light GJ, Schousboe MI, Chereshsky AY et al (1996) Use of the polymerase chain reaction to detect Legionella DNA in urine and serum samples from patients with pneumonia. Clin Infect Dis 23:475–480

    Article  PubMed  CAS  Google Scholar 

  44. Helbig JH, Engelstädter T, Maiwald M, Uldum SA, Witzleb W, Lück PC (1999) Diagnostic relevance of the detection of Legionella DNA in urine samples by the polymerase chain reaction. Eur J Clin Microbiol Infect Dis 18:716–722

    Article  PubMed  CAS  Google Scholar 

  45. Diederen BMW, Bruin JP, den Boer JW, Peeters MF, Yzerman EPF (2007) Sensitivity of Legionella pneumophila DNA detection in serum samples in relation to disease severity. J Med Microbiol 56:1255

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the diagnostic laboratories for the submission of the clinical specimens. We also gratefully acknowledge Rod Ratcliff, Institute of Medical and Veterinary Science, Adelaide, Australia, for the provision of unpublished Legionella mip sequence data, Clare Ling, Health Protection Agency (HPA) Microbiology Services for the purified genomic DNA from M. tuberculosis and Stefano Conti, Statistics Unit, HPA—Health Protection Services for the assistance with the Probit analyses.

Authors’ declaration

This work was supported, in part, by funding from the European Centre for Disease Prevention and Control, “Laboratory support for surveillance of Legionnaires’ disease at European level”. Preliminary results from this study were presented at Legionella 2009, Institut Pasteur, Paris, France, 13–17 October 2009, abstract P38 and the Society for General Microbiology Spring Meeting, Harrogate International Centre, Harrogate, UK, 30 March–2 April 2009, abstract HAR29/06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Fry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentasti, M., Fry, N.K., Afshar, B. et al. Application of Legionella pneumophila-specific quantitative real-time PCR combined with direct amplification and sequence-based typing in the diagnosis and epidemiological investigation of Legionnaires’ disease. Eur J Clin Microbiol Infect Dis 31, 2017–2028 (2012). https://doi.org/10.1007/s10096-011-1535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1535-0

Keywords

Navigation