Skip to main content

Advertisement

Log in

Dysbiosis signature of mycobiota in colon polyp and colorectal cancer

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Microbiota refers to a colony of microorganisms, and they are found in all multicellular organisms. This colony plays a major role in both the physiology and disease of the organism it inhabits. Much attention has been paid to host–microbiota interactions, but there has been little investigation on its role in carcinogenesis. In this study, we characterized a fecal mycobiota, also known as fungal signature, for the first time with 131 subjects, comprising polyp and colorectal cancer (CRC) patients, as well as a healthy control population. The data obtained were analyzed to assess the biodiversity and composition of the fungi. The impacts of anatomic position and tumor stage on the mycobiota were also evaluated. Correlations between fungi were investigated using the Spearman test. We observed fungal dysbiosis in colon polyps and CRC, including decreased diversity in polyp patients, an increased Ascomycota/Basidiomycota ratio, and an increased proportion of opportunistic fungi Trichosporon and Malassezia, which might favor the progression of CRC. Subsequent analysis with regard to tumor stage demonstrated a lower diversity and significant mycobiota alteration in early-stage tumors. Finally, the fungal correlation showed a close relationship within the community and concomitantly revealed a dramatically structured discrepancy in each clinical phenotype. In conclusion, our study has uncovered a distinct fungal dysbiosis and an alteration in the fungal network, which could play important roles in polyp and CRC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N (2010) Colorectal cancer. Lancet 375(9719):1030–1047

    Article  PubMed  Google Scholar 

  3. Collins D, Hogan AM, Winter DC (2011) Microbial and viral pathogens in colorectal cancer. Lancet Oncol 12(5):504–512

    Article  CAS  PubMed  Google Scholar 

  4. Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14(7):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohtani N, Yoshimoto S, Hara E (2014) Obesity and cancer: a gut microbial connection. Cancer Res 74(7):1885–1889

    Article  CAS  PubMed  Google Scholar 

  8. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  9. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  10. Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120(7):1183–1196

    Article  CAS  PubMed  Google Scholar 

  11. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C (2017) New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tian H, Ge X, Nie Y, Yang L, Ding C, McFarland LV, Zhang X, Chen Q, Gong J, Li N (2017) Fecal microbiota transplantation in patients with slow-transit constipation: a randomized, clinical trial. PLoS One 12(2):e0171308

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513(7516):59–64

    Article  CAS  PubMed  Google Scholar 

  14. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R, Franke L, van Dullemen HM, Ter Steege RW, Huttenhower C, Dijkstra G, Xavier RJ, Festen EA, Wijmenga C, Zhernakova A, Weersma RK (2016) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. doi:10.1136/gutjnl-2016-312135

    Google Scholar 

  15. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shanahan F (2013) The colonic microbiota in health and disease. Curr Opin Gastroenterol 29(1):49–54

    Article  CAS  PubMed  Google Scholar 

  17. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, Su L, Li X, Li X, Li J, Xiao L, Huber-Schönauer U, Niederseer D, Xu X, Al-Aama JY, Yang H, Wang J, Kristiansen K, Arumugam M, Tilg H, Datz C, Wang J (2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6:6528

    Article  CAS  PubMed  Google Scholar 

  18. Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, O’Riordain M, Shanahan F, O’Toole PW (2017) Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:633–643. doi:10.1136/gutjnl-2015-309595

    Article  PubMed  Google Scholar 

  19. Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC, Chan AWH, Chan FKL, Sung JJY, Yu J (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152:1419–1433.e5

    Article  PubMed  Google Scholar 

  20. Gao R, Gao Z, Huang L, Qin H (2017) Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis 36(5):757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H (2017) Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-017-3026-4

    PubMed Central  Google Scholar 

  22. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, Mellul A, Chaushu S, Manson AL, Earl AM, Ou N, Brennan CA, Garrett WS, Bachrach G (2016) Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20(2):215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gouba N, Drancourt M (2015) Digestive tract mycobiota: a source of infection. Med Mal Infect 45(1–2):9–16

    Article  CAS  PubMed  Google Scholar 

  27. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L (2017) Fungal microbiota dysbiosis in IBD. Gut 66:1039–1048

    Article  PubMed  Google Scholar 

  28. Monteiro-da-Silva F, Sampaio-Maia B, Pereira Mde L, Araujo R (2013) Characterization of the oral fungal microbiota in smokers and non-smokers. Eur J Oral Sci 121(2):132–135

    Article  PubMed  Google Scholar 

  29. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014) Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10(3):e1003996

    Article  PubMed  PubMed Central  Google Scholar 

  30. Krause R, Moissl-Eichinger C, Halwachs B, Gorkiewicz G, Berg G, Valentin T, Prattes J, Högenauer C, Zollner-Schwetz I (2017) Mycobiome in the lower respiratory tract—a clinical perspective. Front Microbiol 7:2169

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alonso R, Pisa D, Aguado B, Carrasco L (2017) Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J Alzheimers Dis 58(1):55–67

    Article  CAS  PubMed  Google Scholar 

  32. Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, Zhu Y, Zhu B (2015) Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep 5:7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109(16):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Zhang J, Wu C, Cai S, Huang W, Chen J, Xi X, Liang Z, Hou Q, Zhou B, Qin N, Zhang H (2016) Unique features of ethnic Mongolian gut microbiome revealed by metagenomic analysis. Sci Rep 6:34826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  37. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(Database issue):D633–D642

    Article  CAS  PubMed  Google Scholar 

  38. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5(2):169–172

    Article  PubMed  Google Scholar 

  39. Kim YH, Min BH, Kim SJ, Choi HK, Kim KM, Chun HK, Lee H, Kim JY, Chang DK, Son HJ, Rhee PL, Rhee JC, Kim JJ (2010) Difference between proximal and distal microsatellite-unstable sporadic colorectal cancers: analysis of clinicopathological and molecular features and prognoses. Ann Surg Oncol 17(5):1435–1441

    Article  PubMed  Google Scholar 

  40. Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C (2016) Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol 7:1227

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43(7):831–841

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA (2015) Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12(2):77–87

    Article  PubMed  Google Scholar 

  43. Hong G, Miller HB, Allgood S, Lee R, Lechtzin N, Zhang SX (2017) Use of selective fungal culture media increases rates of detection of fungi in the respiratory tract of cystic fibrosis patients. J Clin Microbiol 55(4):1122–1130

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Almeida Júnior JN, Hennequin C (2016) Invasive trichosporon infection: a systematic review on a re-emerging fungal pathogen. Front Microbiol 7:1629

    Article  PubMed  PubMed Central  Google Scholar 

  45. Montoya AM, González GM, Martinez-Castilla AM, Aguilar SA, Franco-Molina MA, Coronado-Cerda E, Rosas-Taraco AG (2017) Cytokines profile in immunocompetent mice during Trichosporon asahii infection. Med Mycol. doi:10.1093/mmy/myx018

    Google Scholar 

  46. Kushima H, Tokimatsu I, Ishii H, Kawano R, Watanabe K, Kadota JI (2017) A new amino acid substitution at G150S in lanosterol 14-alpha demethylase (Erg11 protein) in multi-azole-resistant Trichosporon asahii. Med Mycol J 58(1):E23–E28

    Article  PubMed  Google Scholar 

  47. Angiolella L, Leone C, Rojas F, Mussin J, de Los Angeles Sosa M, Giusiano G (2017) Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med Mycol. doi:10.1093/mmy/myx014

    PubMed  Google Scholar 

  48. Yu YN, Yu TC, Zhao HJ, Sun TT, Chen HM, Chen HY, An HF, Weng YR, Yu J, Li M, Qin WX, Ma X, Shen N, Hong J, Fang JY (2015) Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 6(31):32013–32026

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, Zhang X, Zhao L (2015) Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 5:14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cong L, Liao Y, Yang S, Yang R (2017) In vitro activity of berberine alone and in combination with antifungal drugs against planktonic forms and biofilms of Trichosporon asahii. Mycopathologia. doi:10.1007/s11046-017-0119-7

    PubMed  Google Scholar 

  51. Pande A, Non LR, Romee R, Santos CA (2017) Pseudozyma and other non-Candida opportunistic yeast bloodstream infections in a large stem cell transplant center. Transpl Infect Dis 19(2)

  52. Ilahi A, Hadrich I, Goudjil S, Kongolo G, Chazal C, Léké A, Ayadi A, Chouaki T, Ranque S (2017) Molecular epidemiology of a Malassezia pachydermatis neonatal unit outbreak. Med Mycol. doi:10.1093/mmy/myx022

    PubMed  Google Scholar 

  53. Prohić A, Jovović Sadiković T, Kuskunović-Vlahovljak S, Baljić R (2016) Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals. Acta Dermatovenerol Croat 24(4):274–281

    PubMed  Google Scholar 

  54. Cheikhrouhou F, Guidara R, Masmoudi A, Trabelsi H, Neji S, Sellami H, Makni F, Ayadi A (2017) Molecular identification of Malassezia species in patients with Malassezia folliculitis in Sfax, Tunisia. Mycopathologia 182:583–589

    Article  CAS  PubMed  Google Scholar 

  55. Celis AM, Vos AM, Triana S, Medina CA, Escobar N, Restrepo S, Wösten HA, de Cock H (2017) Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 134:1–6

    Article  CAS  PubMed  Google Scholar 

  56. Ianiri G, Averette AF, Kingsbury JM, Heitman J, Idnurm A (2016) Gene function analysis in the ubiquitous human commensal and pathogen Malassezia genus. mBio 7(6):e01853-16

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park M, Cho YJ, Lee YW, Jung WH (2017) Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses 60(3):188–197

    Article  CAS  PubMed  Google Scholar 

  58. Selander C, Engblom C, Nilsson G, Scheynius A, Andersson CL (2009) TLR2/MyD88-dependent and -independent activation of mast cell IgE responses by the skin commensal yeast Malassezia sympodialis. J Immunol 182(7):4208–4216

    Article  CAS  PubMed  Google Scholar 

  59. Al-Yasiri MH, Normand AC, L’Ollivier C, Lachaud L, Bourgeois N, Rebaudet S, Piarroux R, Mauffrey JF, Ranque S (2016) Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls. Sci Rep 6:36157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rizzetto L, De Filippo C, Cavalieri D (2014) Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 44(11):3166–3181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the subjects who participated in the study. We also want to thank Shanghai Realbio technology Co., Ltd. for their technical assistance in this study.

Funding

This work was supported by grants from the National Natural Science Foundation of China (nos. 81230057, 81372615, 81472262, and 81200264); Emerging Cutting-Edge Technology Joint Research projects of Shanghai (SHDC12012106) and Tongji University Subject Pilot Program (no. 162385).

Author information

Authors and Affiliations

Authors

Contributions

R.Y. and H.L. designed the study; R.Y. and H.L. collected the samples; R.Y., L.S., and C.K. performed the experiments and data analysis, R.Y. and N.Q. interpreted the results; and R.Y. and H.L. wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to H. Qin.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethics committee of Shanghai Tenth People’s Hospital (no. SHSY-IEC-KY-4.0/17-139/01) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflicts of interest associated with this study or its results.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Fig. S1

Sequencing depth represented by Chao 1 (a) and observed species (b) in all samples from the colorectal cancer (C), polyp (P), and healthy control (N) groups (GIF 78 kb)

High Resolution Image (TIFF 2262 kb)

Fig. S2

Operational taxonomic units (OTUs) detected and diversity in the colorectal cancer (C), polyp (P), and healthy control (N) groups. a Shared and specific OTUs in the C, P, and N groups. b Number of core OTU (Y axis) changes in all samples of the three groups, along with the fraction of samples increasing. Calculated α diversity, including observed species diversity index (c), Chao 1 diversity index (d), and Shannon diversity index (e), in the C, P, and N groups (GIF 78 kb)

High Resolution Image (TIFF 3234 kb)

Fig. S3

The change in fungal diversity in early- and late-stage colorectal cancer. Shannon diversity index (a) and Simpson index (b) were calculated and showed statistical significance between the early and late cancer stages (p Shannon = 0.004; p Simpson = 0.01) (GIF 24 kb)

High Resolution Image (TIFF 1134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Kong, C., Li, H. et al. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis 36, 2457–2468 (2017). https://doi.org/10.1007/s10096-017-3085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-017-3085-6

Keywords

Navigation