Skip to main content

Advertisement

Log in

Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

To overcome the environmental impact and declining source of fossil fuels, renewable energy sources need to meet the increasing demand of energy. Solar thermal energy is clean and infinite, suitable to be a good replacement for fossil fuel. However, the current solar technology is still expensive and low in efficiency. One of the effective ways of increasing the efficiency of solar collector is to utilize high thermal conductivity fluid known as nanofluid. This research analyzes the impact on the performance, fluid flow, heat transfer, economic, and environment of a flat-plate solar thermal collector by using silicon dioxide nanofluid as absorbing medium. The analysis is based on different volume flow rates and varying nanoparticles volume fractions. The study has indicated that nanofluids containing small amount of nanoparticles have higher heat transfer coefficient and also higher energy and exergy efficiency than base fluids. The measured viscosity of nanofluids is higher than water but it gives negligible effect on pressure drop and pumping power. Using SiO2 nanofluid in solar collector could also save 280 MJ more embodied energy, offsetting 170 kg less CO2 emissions and having a faster payback period of 0.12 years compared to conventional water-based solar collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alim MA, Abdin Z, Saidur R, Hepbasli A, Khairul MA, Rahim NA (2013) Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build 66:289–296

    Article  Google Scholar 

  • Ardante F, Beccali G, Cellura M, Brano VL (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30:1031–1054

    Article  Google Scholar 

  • ASHRAE (2010) Methods of testing to determine the thermal performance of solar collectors (ANSI approved). Atlanta, USA

  • Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Dharma Rao V (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111

    Article  CAS  Google Scholar 

  • Bejan A (1996) Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Bejan A, Keary DW, Kreith F (1981) Second law analysis and synthesis of solar collector systems. J Sol Energy Eng 103:23–28

    Article  Google Scholar 

  • Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Cengel YA, Boles MA (2010) Thermodynamics: an engineering approach, 7th edn. McGrawHill, New York

    Google Scholar 

  • Chen Z, Meng H, Xing G, Guan H, Zhao F, Liu R, Chang X, Gau X, Wang T, Jia G, Ye C, Chai Z, Zhao Y (2008) Age-related differences in pulmonary and cardiovascular response to SiO2 nanoparticles inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992

    Article  CAS  Google Scholar 

  • Chen Y-j , Wang P-y, Liu Z-h (2013) Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. Int J Heat Mass Transf 56:59–68

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing therm conductivity of fluids with nanoparticles. ASME FED 231:99–103

    CAS  Google Scholar 

  • Das SK, Choi SUS (2009) A review of heat transfer in nanofluids. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer. Elsevier, New York, pp 81–197

  • de Sanchez-Bautista AF, Santibanez-Aguilar JE, Ponce-Ortega JM, Napoles-Rivera F, Serna-Gonzalez M, El-Halwagi MM (2014) Optimal design of domestic water-heating solar systems. Clean Technol Environ Policy. doi:10.1007/s10098-014-0818-4

  • Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067

    Article  CAS  Google Scholar 

  • Esen H (2008) Experimental energy and exergy analysis of double-flow solar air heater having different obstacles on absorber plates. Build Environ 43:1046–1054

    Article  Google Scholar 

  • Faizal M, Saidur R, Mekhilef S, Alim MA (2013) Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag 76:162–168

    Article  CAS  Google Scholar 

  • Faizal M, Saidur R, Mekhilef S (2013b) Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. Earth Environ Sci 16:1–4

  • Faizal M, Saidur R, Mekhilef S (2014) Potential of size reduction of flat-plate solar collectors when applying Al2O3 nanofluid. Adv Mater Res 832:149–153

    Article  Google Scholar 

  • Farahat S, Sarhaddi F, Ajam H (2009) Exergetic optimization of flat plate solar collectors. Renew Energy 34:1169–1174

    Article  Google Scholar 

  • Foster R, Witcher J, Nelson V, Ghassemi M, Mimbela LE, Ghassemi A (2009) Sol energy: renewable energy and the environment. Taylor and Francis, New York

    Book  Google Scholar 

  • Garg HP, Agarwal RK (1995) Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers Manag 36:87–99

    Article  Google Scholar 

  • Gupta KKD, Saha SK (1990) Energy analysis of solar thermal collectors. Renew Energy Environ 1:283–287

  • He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281

    Article  CAS  Google Scholar 

  • Ise N, Sogami I (2005) Structure formation in solution: ionic polymers and colloidal particles. Springer, Berlin

    Google Scholar 

  • Jiang H, Li H, Zan C, Wang F, Yang Q, Shi L (2014) Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid. Thermochim Acta 579:27–30

    Article  CAS  Google Scholar 

  • Kabeel AE, Abou El Maaty T, El Samadony Y (2013) The effect of using nano-particles on corrugated plate heat exchanger performance. Appl Therm Eng 52:221–229

    Article  CAS  Google Scholar 

  • Kahani M, Heris SZ, Mousavi SM (2013) Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/water nanofluid laminar flow through helical coils. J Dispers Sci Technol 34:1704–1712

    Article  CAS  Google Scholar 

  • Kalogirou S (2004) Environmental benefits of domestic solar energy systems. Energy Convers Manag 45:3075–3092

    Article  CAS  Google Scholar 

  • Kalogirou S (2008) Thermal performance, economic and environmental life cycle analysis of thermosyphon solar water heaters. J Sol Energy 83:39–48

  • Kalogirou S (2009) Solar energy engineering: processes and systems. Academic Press, Burlington

    Google Scholar 

  • Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55:4104–4115

    Article  CAS  Google Scholar 

  • Khairul MA, Alim MA, Mahbubul IM, Saidur R, Hepbasli A, Hossain A (2014) Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int Commun Heat Mass Transf 50:8–14

    Article  CAS  Google Scholar 

  • Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  • Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, New York

    Book  Google Scholar 

  • Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publish Company, Malabar

    Google Scholar 

  • Kotulski ZA, Szczepinski W (2010) Error analysis with applications in engineering. Springer, Dordrecht

    Book  Google Scholar 

  • Kulkarni DP, Das DK, Vajjha RS (2009) Application of nanofluids in heating buildings and reducing pollution. Appl Energy 86:2566–2573

    Article  CAS  Google Scholar 

  • Lalchand G (2012) Electricity demand and supply in Peninsular Malaysia: energy efficiency, renewable energy, or nuclear? http://www.christopherteh.com/. Accessed 21 Dec 2012

  • Lenert A, Wang EN (2012) Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy 86:253–265

    Article  CAS  Google Scholar 

  • Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants. Appl Therm Eng 30:2685–2692

    Article  CAS  Google Scholar 

  • Leong KY, Saidur R, Mahlia TMI, Yau YH (2012) Predicting size reduction of shell and tube heat recovery exchanger operated with nanofluids based coolants and its associated energy saving. Energy Educ Sci Technol A 30:1–14

    Google Scholar 

  • Li Q, Xuan Y, Wang J (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  • Li FC, Yang JC, Zhou WW, He YR, Huang YM, Jiang BC (2013) Equation experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta 556:47–53

    Article  CAS  Google Scholar 

  • Liu Z-h, Liao L (2008) Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transf 51:2593–2602

    Article  CAS  Google Scholar 

  • Lu L, Liu Z-H, Xiao H-S (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: indoor experiment. Sol Energy 85:379–387

    Article  CAS  Google Scholar 

  • Mahian O, Mahmud S, Heris SZ (2012) Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 44:438–446

    Article  CAS  Google Scholar 

  • Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MdA, Pop I, Sahin AZ, Wongwises S (2013) A review of entropy generation in nanofluid flow. Int J Heat Mass Transf 65:514–532

    Article  CAS  Google Scholar 

  • Mekhilef S, Safari A, Mustaffa WES, Saidur R, Omar R, Younis MAA (2012) Solar energy in Malaysia: current state and prospects. Renew Sustain Energy Rev 16:386–396

    Article  Google Scholar 

  • Namburu P, Kulkarni D, Dandekar A, Das D (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett IET 2:67–71

    Article  CAS  Google Scholar 

  • Nemet A, Kravanja Z, Klemeš JJ (2012) Integration of solar thermal energy into processes with heat demand. Clean Technol Environ Policy 14:453–463

    Article  Google Scholar 

  • Otanicar TP (2009). Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions. Arizona State University

  • Otanicar T, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. J Renew Sustain Energy 2:033102

    Article  Google Scholar 

  • Owhaib W, Palm B (2004) Experimental investigation of single-phase convective heat transfer in circular microchannels. Exp Therm Fluid Sci 2:105–110

    Article  Google Scholar 

  • Ranjan KR, Kaushik SC (2013) Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy 16:791–805

    Article  Google Scholar 

  • Saidur R, Lai YK (2011) Nanotechnology in vehicle’s weight reduction and associated energy savings. Energy Educ Sci Technol A 26:87–101

    CAS  Google Scholar 

  • Saidur R, BoroumandJazi G, Mekhilef S, Jameel M (2012) Exergy analysis of solar energy applications. Renew Sustain Energy Rev 16:350–356

    Article  Google Scholar 

  • Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070

    Article  CAS  Google Scholar 

  • Singal RK (2008) Non-conventional energy resources (alternative energy sources and systems). S.K. Kataria and Sons, Delhi

    Google Scholar 

  • Spardo JV, Rabl A (1999) Estimates of real damage from air pollution: site dependence and simple impact indices for LCA. Int J LCA 4:229–243

    Article  Google Scholar 

  • Sustainable Energy Development (2010) Ninth Malaysia plan

  • Suzuki A (1988) General theory of exergy balance analysis and application to solar collectors. Energy 13:153–160

    Article  Google Scholar 

  • Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R (2011) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:225

    Article  Google Scholar 

  • Tiwari AK, Ghosh P, Sarkar J (2013) Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl Therm Eng 57:24–32

    Article  CAS  Google Scholar 

  • Tora EA, El-Halwagi MM (2009) Optimal design and integration of solar systems and fossil fuels for sustainable and stable power outlet. Clean Technol Environ Policy 11:401–407

    Article  Google Scholar 

  • Tsillingiridis G, Martinopoulos G, Kyriakis N (2004) Life cycle environmental impact of a thermosyphon domestic solar hot water system in comparison with electrical and gas water heating. Renew Energy 29:1277–1288

    Article  Google Scholar 

  • Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294

    Article  CAS  Google Scholar 

  • Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371

    Article  CAS  Google Scholar 

  • White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  • Yang X, Liu Z-h (2010) A kind of nanofluid consisting of surface-functionalized nanoparticles. Nanoscale Res Lett 5:1324–1328

    Article  CAS  Google Scholar 

  • Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012a) An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86:771–779

    Article  CAS  Google Scholar 

  • Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S (2012b) An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci 39:207–212

    Article  CAS  Google Scholar 

  • Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012c) An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39:293–298

    Article  CAS  Google Scholar 

  • Zamzamian A, KeyanpourRad M, KianiNeyestani M, Jamal-Abad MT (2014) An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 71:658–664

    Article  CAS  Google Scholar 

  • Zhou SQ, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:1–3

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the University of Malaya under UMRG Project no.: RP015B-13AET and Ministry of Education Malaysia for UM-MoE High Impact Research Grant (HIRG) scheme (Project no.: UM.C/HIR/MoHE/ENG/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saidur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizal, M., Saidur, R., Mekhilef, S. et al. Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Techn Environ Policy 17, 1457–1473 (2015). https://doi.org/10.1007/s10098-014-0870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0870-0

Keywords

Navigation